ILLINOIS REGISTER

POLLUTION CONTROL BOARD

- 1) <u>Heading of the Part</u>: Radiation Hazards
- 2) <u>Code Citation</u>: 35 Ill. Adm. Code 1000

3)	Section Numbers:	Proposed Actions:
	1000.101	Amendment
	1000.102	Amendment
	1000.103	Amendment
	1000.201	Amendment
	1000.202	New Section
	1000.301	Amendment
	1000.302	Amendment
	1000.401	Amendment
	1000.402	Amendment
	1000.403	Amendment
	1000.501	Amendment
	1000.502	Amendment
	1000.503	Amendment
	1000.APPENDIX A	Amendment

- 4) <u>Statutory Authority</u>: Implementing and authorized by Sections 25(b) and 27 of the Environmental Protection Act [415 ILCS 5/25(b) and 27].
- 5) <u>A Complete Description of the Subjects and Issues Involved</u>: In 2016, the Board began reviewing its rules to identify obsolete, repetitive, confusing, or otherwise unnecessary language. On January 10, 2018, the Illinois Environmental Protection Agency (IEPA) filed a proposal to update provisions including Part 1000. IEPA's proposal arose from Executive Order 2016-13, which required agencies to identify outdated, repetitive, confusing, or unnecessary rules and then amend or repeal them. These proposed amendments to Part 1000 include those submitted by IEPA and those identified separately by the Board. Both IEPA and the Board intend the amendments to be non-substantive clarifications.
- 6) <u>Published studies or reports, and sources of underlying data, used to compose this</u> <u>rulemaking</u>: No
- 7) Will this proposed rulemaking replace an emergency rule currently in effect? No
- 8) <u>Does this rulemaking contain an automatic repeal date</u>? No
- 9) <u>Does this proposed rulemaking contain incorporations by reference</u>? Yes

NOTICE OF PROPOSED AMENDMENTS

- 10) Are there any proposed rulemakings to this Part pending? No
- 11) <u>Statement of Statewide Policy Objectives</u>: This proposed amendment does not create or enlarge a State mandate as defined in Section 3(b) of the State Mandates Act. [30 ILCS 805/3].
- 12) <u>Time, Place, and Manner in which interested persons may comment on this proposed</u> <u>rulemaking</u>: The Board will accept written public comments on this proposal for a period of at least 45 days after the date of publication in the Illinois Register. Public comments should refer to Docket R18-28 and be filed electronically through the Clerk's Office On-Line (COOL) on the Board's website at pcb.illinois.gov. Public comments may be addressed to:

Clerk's Office Illinois Pollution Control Board 100 W. Randolph St., Suite 11-500 Chicago, IL 60601

Interested persons may download copies of the Board's opinions and orders in R18-28 from the Board's Web site at pcb.illinois.gov and may also request copies by calling the Clerk's office at 312-814-3620.

- 13) <u>Initial Regulatory Flexibility Analysis</u>:
 - A) <u>Types of small businesses, small municipalities and not for profit corporations</u> <u>affected</u>: None
 - B) <u>Reporting, bookkeeping or other procedures required for compliance</u>: None
 - C) <u>Types of Professional skills necessary for compliance</u>: None
- 14) <u>Small Business Impact Analysis</u>: The Board expects that this rulemaking will not have an adverse impact on small business.
- 15) <u>Regulatory Agenda on which this rulemaking was summarized</u>: January 2022

The full text of the Proposed Amendments begins on the next page:

1		TITLE 35: ENVIRONMENTAL PROTECTION
2		SUBTITLE I: ATOMIC RADIATION
3		CHAPTER I: POLLUTION CONTROL BOARD
4		DA DT 1000
5		PART 1000
6		RADIATION HAZARDS
7		
8		SUBPART A: GENERAL PROVISIONS
9		
10	Section	
11	1000.101	Authority
12	1000.102	Purpose
13	1000.103	Scope
14		
15		SUBPART B: DEFINITIONS
16		
17	Section	
18	1000.201	Definitions
19	1000.202	Incorporations by Reference
20		
21		SUBPART C: STANDARDS AND LIMITATIONS
22		
23	Section	
24	1000.301	Permissible Levels of Radiation in Unrestricted Areas
25	1000.302	Radioactive Emissions to Unrestricted Areas
26		
27		SUBPART D: ADDITIONAL REQUIREMENTS
28		
29	Section	
30	1000.401	Applicability
31	1000.402	Definitions
32	1000.403	Environmental Standards for Uranium Fuel Cycle
33		
34		SUBPART E: RECORDS
35		
36	Section	
37	1000.501	Records
38	1000.502	Notification of Incidents
39	1000.503	Other Provisions
40		
41	1000.APPE	NDIX A Concentrations in Air Above Natural Background
42		
43	AUTHORI	I'Y: Implementing Section 25b and authorized by Section 27 of the Environmental
44	Protection A	Act [415 ILCS 5/25b and 27].

49 50		SUBPART A: GENERAL PROVISIONS		
51				
52	Section 100	0.101 Authority		
53				
54	The Board a	dopts the rules contained in this title under the authority of Title VI-A of the		
55	Environmen	tal Protection Act. [415 ILCS 5/25b]		
56	(5			
)/ 50	(Sou	rce: Amended at 46 III. Reg, effective)		
38 50	Section 100	0 102 Dumpere		
59 60	Section 100	0.102 Furpose		
61	a)	This Part establishes standards for protection against radiological air pollutants		
62	u)	associated with materials and activities under licenses issued by the United States		
63		Nuclear Regulatory Commission (NRC) under the Atomic Energy Act of 1954		
64		(42 U.S.C. 5801 et seq.), and the Energy Reorganization Act of 1974 (42 U.S.C.		
65		5801 et seq.)		
66				
67	b)	Persons subject to this Part must comply with this Part and make every effort to		
68		maintain radiation exposures in, and releases of radioactive materials to,		
69		unrestricted areas as low as is reasonably achievable. The term "as low as is		
70		reasonably achievable" means the lowest radiation exposure levels achievable		
/1 72		considering the state of technology, the economics of improvements in relation to		
72 73		considerations in relation to the utilization of atomic energy in the public interest		
73 74		considerations, in relation to the utilization of atomic energy in the public interest.		
75	c)	Persons licensed by the NRC to operate light-water-cooled nuclear power reactors		
76	-)	will satisfy subsection (b) if they achieve the design objectives and limiting		
77		conditions for operation specified in 10 CFR 50, Appendix I (1984), incorporated		
78		by reference in Section 1000.202.		
79				
80	(Sou	rce: Amended at 46 Ill. Reg, effective)		
81	~			
82	Section 100	0.103 Scope		
83				
84 95	This Part app	plies to all persons who receive, possess, use, or transfer material licensed under 10 use 25, 40, or 70 (1084) incomparated by reference in Section 1000 202 en who are		
0J 86	UFK 50 unrough 55, 40, or 70 (1984), incorporated by reference in Section 1000.202 or Who are licensed to operate a production or utilization facility under 10 CEP 50 (1084), incorporated by			
80 87	reference in	Section 1000 202		
07		Section 1000.202.		

88

1st Notice

89	(Source: Amended at 46 Ill. Reg, effective)
90	
91	SUBPART B: DEFINITIONS
92	S 4
93	Section 1000.201 Definitions
94 05	
95 00	Except as stated in this Section, or unless a different meaning of a word or term is clear from the
90 07	context, the definition of words or terms in this Part will be the same as that applied to the same
9/	words or terms in the Environmental Protection Act [415 ILCS 5]:
98 00	"A at" many the Environmental Protection A at [415 II CS 5/1 at gog]
99 100	Act means the Environmental Protection Act [415 ILCS 5/1 et seq.]
100	"Board" means the Illinois Pollution Control Board
101	Board means the minors ronution Control Board.
102	"Department" means the Illinois Department of Emergency Management Services
103	Bureau of Nuclear Facility Safety
104	Buleau of Nuclear Lacinty Safety.
105	"Dose" means the quantity of radiation absorbed per unit of mass by the body or
107	by any portion of the body. Under this Part a dose during a period of time means
108	the total quantity of radiation absorbed, per unit of mass, by the body or by any
109	portion of the body during such period of time. The units of dose used in this Part
110	are "Rad" and "Rem", as defined in this Section.
111	···· · ···· ···· ···· ····· ····· ······
112	"Individual" means any human being.
113	
114	"Licensed activity" means any activity engaged in under a general or specific
115	license issued by the NRC.
116	
117	"Licensed facility" means any facility constructed or operated under a permit or a
118	general or specific license issued by the NRC.
119	
120	"Licensed material" means any material received, possessed, used, or transferred
121	under a general or specific license issued by the NRC.
122	
123	"Licensee" means any person to whom a permit or a general or specific license
124	has been issued by the NRC.
125	
126	"NRC" means the United States Nuclear Regulatory Commission.
127	
128	"Rad" means a measure of the dose of any radiation to body tissues in terms of the
129	energy absorbed per unit mass of the tissue. One rad is the dose corresponding to
130	the absorption of 100 ergs per gram of tissue. (One millirad (mrad) = 0.001 rad).
131	
132	"Radiation" means any or all of the following: alpha rays, beta rays, gamma rays,

	<u>1st Notice</u>	JCAR351000-2206867r01
133 134 135		X-rays, neutrons, highspeed electrons, high-speed protons, and other atomic particles; but not sound or radio waves, or visible, infrared, or ultraviolet light.
135		"Radioactive material" and "radioactive emissions" means any dusts, particulates,
137		fumes, mists, vapors, or gases which spontaneously emit ionizing radiation.
138		
139		"Rem" means a measure of the dose of any ionizing radiation to body tissue in
140		terms of its estimated biological effect relative to a dose received from an
141		exposure to one roentgen of X-rays. (One millirem (mrem) = 0.001 rem). The
142		relation of rem to other dose units depends upon the biological effect under
143		consideration and upon the condition of irradiation. For this Part, any of the
144		following is considered to be equivalent to a dose of one rem:
145		
146		An exposure to one roentgen of X- or gamma radiation;
147		
148		A dose of one rad due to X-, gamma, or beta radiation;
149		
150		A dose of 0.1 rad due to neutrons or high energy protons;
151		
152		A dose of 0.05 rad due to particles heavier than protons and with sufficient
153		energy to reach the lens of the eye. If it is more convenient to measure the
154		neutron flux, or equivalent, than to determine the neutron dose in rads, one
155		rem of neutron radiation may be assumed to be equivalent to 14 million
156		neutrons per square centimeter incident upon the body; or, if information
157		is available to estimate with reasonable accuracy the approximate
158		distribution in energy of neutrons, the incident number of neutrons per
159		square centimeter equivalent to one rem may be estimated from the
160		following table.
161		

Neutron	Flux	Dose	Eq	uiva	lents
110411011	1 10/1	D000	LY	1 1 1 U	I VII (D

No. of Neutron Energy centim		ron per square equivalent to a	Average flux to deliver 100 millirem in 40 hours		
(Mev)	dose of 1 rem	$n (neutrons/cm^2)$	(neutron/cm ² per second		
Thermal		70 x 10 ⁶			
0.0001		$20 \ge 10^6$			
0.005	82	$20 \ge 10^6$			
0.02	40	$00 \ge 10^6$			
0.1		$20 \ge 10^6$			
0.5		3×10^6			
1.0		$26 \ge 10^6$			
2.5	2	29×10^6			
5.0	2	26×10^6			

		7.5 24×10^6
		$10.0 \dots 17$
		10 to 30 14×10^6
162		
163		"Restricted area" means any area, access to which is controlled by the licensee to
164		protect individuals from exposure to radiation and radioactive materials.
165		"Restricted area" must not include any areas used as residential quarters, although
166		a separate room or rooms in a residential building may be set apart as a restricted
167		area.
168		
169		"Unrestricted area" means any area access to which is not controlled by the
170		licensee to protect, individuals from exposure to radiation and radioactive
171		materials, and any area used for residential quarters.
172		
173	(Sour	ce: Amended at 46 Ill. Reg., effective)
174	×	
175	Section 1000	.202 Incorporations by Reference
176		
177	The following	g materials are incorporated by reference. These incorporations by reference do not
178	include any la	ater amendments or editions:
179	-	
180	a)	Numerical Guides for Design Objectives and Limiting Conditions for Operations
181	,	to Meet the Criterion "As Low as is Reasonably Achievable" for Radioactive
182		Material in Light-Water-Cooled Nuclear Power Reactor Effluents, 10 CFR 50,
183		Appendix I (1984).
184		
185	b)	Rules of General Applicability to Domestic Licensing of Byproduct Material, 10
186	,	CFR 30 (1984).
187		
188	c)	General Domestic Licenses for Byproduct Material, 10 CFR 31 (1984).
189		
190	d)	Specific Domestic Licenses to Manufacture or Transfer Certain Items Containing
191		Byproduct Material, 10 CFR 32 (1984).
192		
193	e)	Specific Domestic Licenses of Broad Scope for Byproduct Material, 10 CFR 33
194		(1984).
195		
196	f)	Licenses for Industrial Radiography and Radiation Safety Requirements for
197		Industrial Radiographic Operations, 10 CFR 34 (1984).
198		
199	g)	Medical Use of Byproduct Material, 10 CFR 35 (1984).
200	Ċ,	
201	h)	Domestic Licensing of Source Material, 10 CFR 40 (1984).
202	/	~ ~ ~ ~ ~ ~ /

1st Notice JCAR351000-2206867r01 203 i) Domestic Licensing of Production and Utilization Facilities, 10 CFR 50 (1984). 204 205 j) Environmental Protection Regulations for Domestic Licensing and Related 206 Regulatory Functions, 10 CFR 51 (1984). 207 208 Domestic Licensing of Special Nuclear Material, 10 CFR 70 (1984). k) 209 (Source: Added at 46 Ill. Reg., effective) 210 211 212 SUBPART C: STANDARDS AND LIMITATIONS 213 214 Section 1000.301 Permissible Levels of Radiation in Unrestricted Areas 215 216 A person must not possess, use, receive, or transfer licensed material or engage in licensed 217 activities as to create radiation levels in air in any unrestricted area: 218 219 That could result in an individual, when all radioactive emissions by the licensee a) 220 are taken into account, receiving a dose to the whole body in excess of 0.5 rem in 221 any one year; 222 223 b) That could result in an individual continuously present in the area, when all 224 radioactive emissions by the licensee are taken into account, receiving a dose in 225 excess of 2 millirems in any one hour; or 226 227 c) That could result in an individual continuously present in the area, when all 228 radioactive emissions by licensee are taken into account, receiving a dose in 229 excess of 100 millirems in any seven consecutive days. 230 231 (Source: Amended at 46 Ill. Reg., effective) 232 233 Section 1000.302 Radioactive Emissions to Unrestricted Areas 234 235 a) A person must not possess, use, receive, or transfer licensed material or engage in 236 licensed activities so as to release to air in an unrestricted area radioactive 237 material exceeding the concentration specified in Appendix A of. For this 238 Section, concentrations of radioactive material may be averaged over a period not 239 greater than one year. 240 241 For this Section, the concentration limits in Appendix A apply at the boundary of **b**) 242 the restricted area. The concentration of radioactive material discharged through 243 a stack, pipe or similar conduit may be determined for the point where the 244 material leaves the conduit. If the conduit discharges within the restricted area, 245 the concentration at the boundary may be determined by applying established 246 factors for dilution, dispersion, or decay between the point of discharge and the

247	boundary.
248	-
249	(Source: Amended at 46 Ill. Reg, effective)
250	
251	SUBPART D: ADDITIONAL REQUIREMENTS
252	
253	Section 1000.401 Applicability
254	
255	This Subpart applies to radiation doses received by members of the public in the general
256	environment and to radioactive materials introduced into the general environment due to
257	operations which are part of a nuclear fuel cycle.
258	
259	(Source: Amended at 46 III. Reg, effective)
260	
261	Section 1000.402 Definitions
262	
263	As used in this Subpart:
264	
265	"Curie" (Ci) means that quantity of radioactive material producing 3/ billion
200	nuclear transformations per second. (One millicurie (mC1)=0.001 C1.)
207	"Dece any instant" means the meduat of cheenhad dece and ammonists factors to
208	Dose equivalent means the product of absorbed dose and appropriate factors to
209	account for differences in biological effectiveness due to the quality of fadiation
270	and its spatial distribution in the body. The unit of dose equivalent is the Telli. (One millirem (mrem) = 0.001 rem.)
271	(One minimum (michi) $= 0.001$ fem.)
272	"General environment" means the total terrestrial atmospheric and aquatic
273	environments outside sites upon which any operation which is part of a nuclear
275	fuel cycle is conducted
276	
277	"Gigawatt-year" refers to the quantity of electrical energy produced at the busbar
278	of a generating station. A gigawatt is equal to one billion watts. A gigawatt-vear
279	is equivalent to the amount of energy output represented by an average electric
280	power level of one gigawatt sustained for one year.
281	
282	"Member of the public" means any person that can receive a radiation dose in the
283	general environment, whether the person may or may not also be exposed to
284	radiation in an occupation associated with a nuclear fuel cycle. However, a person
285	is not considered a member of the public during any period in which that person is
286	engaged in carrying out any operation which is part of a nuclear fuel cycle.
287	
288	"Nuclear fuel cycle" means the operations associated with the production of
289	electrical power for public use by any fuel cycle through utilization of nuclear
290	energy.

291		
292		"Organ" means any human organ exclusive of the dermis, the epidermis, or the
293		cornea.
294		
295		"Site" means the area contained within the boundary of a location under the
296		control of persons possessing or using radioactive material on which is conducted
297		one or more operations covered by this Part.
298		
299		"Uranium fuel cycle" means the operations of milling of uranium ore, chemical
300		conversion of uranium, isotopic enrichment of uranium, fabrication of uranium
301		fuel, generation of electricity by a light-water-cooled nuclear power plant using
302		uranium fuel, and reprocessing of spent uranium fuel, to the extent that these
303		directly support the production of electrical power for public use utilizing nuclear
304		energy, but excludes mining operations, operations at waste disposal sites,
305		transportation of any radioactive material in support of these operations, and the
306		reuse of recovered nonuranium special nuclear and by-product materials from the
307		cycle.
308		
309	(Sourc	ce: Amended at 46 Ill. Reg., effective)
310	× ×	
311	Section 1000	403 Environmental Standards for Uranium Fuel Cycle
312		·
313	A person cond	ducting operations covered by this Subpart must assure that:
314	•	
315	a)	The annual dose equivalent does not exceed 25 millirems to the whole body, 75
316	,	millirems to the thyroid, and 25 millirems to any other organ of any member of
317		the public as the result of exposures to planned discharges of radioactive
318		materials, radon and its daughters excepted, to the general environment from
319		uranium fuel cycle operations and to radiation from these operations.
320		
321	b)	The total quantity of radioactive materials entering the general environment from
322	,	the entire uranium fuel cycle, per gigawatt-year of electrical energy produced by
323		the fuel cycle, contains less than 50,000 curies of krypton-85, 5 millicuries of
324		iodine-129, and 0.5 millicuries combined of plutonium-239 and other alpha-
325		emitting transuranic radionuclides with the halflives greater than one year.
326		
327	(Sourc	ce: Amended at 46 Ill. Reg., effective)
328	× ×	
329		SUBPART E: RECORDS
330		
331	Section 1000	.501 Records
332		
333	A person subj	ect to this Part must submit to the Department, for any material or facility
334	permitted or 1	icensed by the NRC or for which an NRC permit or license is sought:

335						
336	a)	Preliminary Safety Analysis Report and Final Safety Analysis Report, as				
337	described in 10 CFR 50.34, incorporated by reference in Section 1000.202.					
338						
339	b)	Application for Construction Permit and for all amendments, including				
340	0)	information required by 10 CFR 50 34a 50 36 and 51 20 incorporated by				
341		reference in Section 1000 202				
342						
343	c)	Environmental Impact Appraisal Draft and Final Environmental Impact				
344	0)	Statement Negative Declaration or other document prepared by the NRC under				
345		10 CFR 51 incorporated by reference in Section 1000 202				
346		To CTR 91, incorporated by reference in Section 1000.202.				
340	d)	Operating Permit and all amendments thereto, including Technical Specifications				
3/8	u)	under 10 CEP 50.36a incorporated by reference in Section 1000.202				
240		under 10 CFR 50.50a, incorporated by reference in Section 1000.202.				
250		Application for Amondment to Operating License				
251	6)	Application for Amendment to Operating License.				
252	Ð	All data magazida and non-arts submitted to the NDC for determining or mudioting				
332 252	1)	All data, records, and reports submitted to the NRC for determining or predicting				
353		radiation levels in air in unrestricted areas or the type or amount of radioactive				
354		materials emitted into air conducted by or for such persons.				
300	(0					
356	(Sourd	ce: Amended at 46 III. Reg, effective)				
33/ 259						
358	Section 1000	.502 Notification of incidents				
339	A 1.					
360	A person subject to this Part must immediately notify by telephone the Illinois Emergency					
361	Management	Agency (IEMA) of any incident or condition arising from the use or possession of				
362	licensed materials or facilities or the conducting of licensed activities which may have caused or					
363	threatens to cause emissions or radiation levels in excess of those allowed under this Part.					
364	IEMA's 24-h	our Operations Center can be reached for notification of incidents at 1-800-782-				
365	7860, or, 1f ca	alling from outside Illinois, 1-217-782-7860.				
366						
367	(Sourd	ce: Amended at 46 III. Reg, effective)				
368						
369	Section 1000	.503 Other Provisions				
370						
371	a)	The definitions specified in 35 Ill. Adm. Code 201.102 apply to this Part.				
372						
373	b)	All persons subject to this Part are subject to the requirements and provisions of				
374		35 Ill. Adm. Code 201.122, 201.123, 201.125, 201.126, 201.141, 201.150 and				
375		201.151.				
376						
377	(Sour	ce: Amended at 46 Ill. Reg, effective)				
378						

379 Section 1000.APPENDIX A Concentrations in Air Above Natural Background 380

Element (atomic number)	Isotope ¹		µCi/ml
Actinium (89)	AC227	S	8 x 10 ⁻¹⁴
		Ι	9 x 10 ⁻¹³
	AC 228	S	3 x 10 ⁻⁹
		Ι	6 x 10 ⁻¹⁰
Americium (95)	Am 241	S	2 x 10 ⁻¹³
		Ι	4 x 10 ⁻¹²
	Am 242m	S	Am 242mS2 x 10 ⁻¹³
		Ι	9 x 10 ⁻¹²
	Am 242	S	1 x 10 ⁻⁹
		Ι	2 x 10 ⁻⁹
	Am 243	S	2×10^{-13}
		Ι	4 x 10 ⁻¹²
	Am 244	S	1 x 10 ⁻⁷
		Ι	8 x 10 ⁻⁷
Antimony	Sb 122	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
	Sb 124	S	5 x 10 ⁻⁹
		Ι	7 x 10 ⁻¹⁰
	Sb 125	S	2 x 10 ⁻⁸
		Ι	9 x 10 ⁻¹⁰
Argon (18)	A 37	Sub^2	1 x 10 ⁻⁴
	A 41	Sub	4 x 10 ⁻⁸
Arsenic (33)	As 73	S	7 x 10 ⁻⁸
		Ι	1×10^{-8}
	As 74	S	1×10^{-8}
		Ι	4×10^{-9}
	As 76	S	4×10^{-9}
		Ι	3×10^{-9}
	As 77	S	2×10^{-8}
		Ι	$1 \ge 10^{-8}$
Astatine (85)	At 211	S	2×10^{-10}
		Ι	1×10^{-9}
Barium (56)	Ba 131	S	4×10^{-8}
		I	1×10^{-8}
	Ba 140	S	4×10^{-9}
	D1 040	l	1×10^{-9}
Berkelium (97)	Bk 249	S	3×10^{-11}
	D1 050	l	4×10^{-9}
	Bk 250	S	5 x 10 ⁻⁹

		I	4×10^{-8}
Bervlium (4)	Be 7	S	2×10^{-7}
		I	4 x 10 ⁻⁸
Bismuth (83)	Bi 206	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
	Bi 207	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻¹⁰
	Bi 210	S	2 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
	Bi 212	S	3 x 10 ⁻⁹
		Ι	7 x 10 ⁻⁹
Bromine (35)	Br 82	S	4 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁹
Cadmium (48)	Cd 109	S	2 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
	Cd 115m	S	1 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁹
	Cd 115	S	8 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
Calcium (20)	Ca 45	S	1 x 10 ⁻⁹
		Ι	4 x 10 ⁻⁹
	Ca 47	S	6 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
Californium (98)	Cf 249	S	5 x 10 ⁻¹⁴
		Ι	3 x 10 ⁻¹²
	Cf 250	S	2 x 10 ⁻¹³
		Ι	3 x 10 ⁻¹²
	Cf 251	S	6 x 10 ⁻¹⁴
		Ι	3 x 10 ⁻¹²
	Cf 252	S	2 x 10 ⁻¹³
		Ι	1 x 10 ⁻¹²
	Cf 253	S	3 x 10 ⁻¹¹
		Ι	3 x 10 ⁻¹¹
	Cf 254	S	2 x 10 ⁻¹³
		Ι	2 x 10 ⁻¹³
Carbon (6)	C 14	S	1 x 10 ⁻⁷
	(CO_2)	Sub	1 x 10 ⁻⁶
Cerium (58)	Ce 141	S	2 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁹
	Ce 143	S	9 x 10 ⁻⁹
		Ι	7 x 10 ⁻⁹
	Ce 144	S	3 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
Cesium (55)	Cs 131	S	4 x 10 ⁻⁷

		т	1 - 10-7
	C = 124	l	I X IU ⁷
	Cs 134m	5	$1 \times 10^{\circ}$
	C 124	l C	2×10^{-9}
	Cs 134	S	1×10^{-10}
	G 105	l	4×10^{10}
	Cs 135	S	2×10^{-8}
		I	3×10^{-9}
	Cs 136	S	$1 \ge 10^{-8}$
		Ι	6 x 10 ⁻⁹
	Cs 137	S	2 x 10 ⁻⁹
		Ι	5 x 10 ⁻¹⁰
Chlorine (17)	C1 36	S	1 x 10 ⁻⁸
		Ι	8 x 10 ⁻¹⁰
	C1 38	S	9 x 10 ⁻⁸
		Ι	7 x 10 ⁻⁸
Chromium (24)	Cr 51	S	4 x 10 ⁻⁷
		Ι	8 x 10 ⁻⁸
Cobalt (27)	Co 57	S	1 x 10 ⁻⁷
		Ι	6 x 10 ⁻⁹
	Co 58m	S	6 x 10 ⁻⁷
		I	3×10^{-7}
	Co 58	S	3×10^{-8}
	0050	Ĩ	2×10^{-9}
	Co 60	S	1×10^{-8}
	0000	I	3×10^{-10}
Conner(29)	Cu 64	S	7×10^{-8}
copper (2))	Cuor	I I	4×10^{-8}
Curium (96)	Cm 2/2	I S	4×10^{-12}
Currum (90)		I I	4×10^{-12}
	Cm 242	I S	0×10^{-13}
	CIII 243	S T	2×10^{-12}
	Cm 244	l C	5×10^{-13}
	Cm 244	5	3×10^{-12}
	C 245	l C	3×10^{-12}
	Cm 245	S	2×10^{13}
	a b i c	l	4×10^{-12}
	Cm 246	S	2×10^{-13}
	~ • • •	l	4×10^{-12}
	Cm 247	S	2×10^{-13}
		Ι	$4 \ge 10^{-12}$
	Cm 248	S	2×10^{-14}
		Ι	4×10^{-13}
	Cm 249	S	4 x 10 ⁻⁷
		Ι	4 x 10 ⁻⁷
Dysprosium (66)	Dy 165	S	9 x 10 ⁻⁸

		I	7 x 10 ⁻⁸
	Dv 166	S	8 x 10 ⁻⁹
		I	7 x 10 ⁻⁹
Einsteinium (99)	Es 253	S	3 x 10 ⁻¹¹
		Ι	2 x 10 ⁻¹¹
	Es 254m	S	2 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
	Es 254	S	6 x 10 ⁻¹³
		Ι	4 x 10 ⁻¹²
	Es 255	S	2 x 10 ⁻¹¹
		Ι	1 x 10 ⁻¹¹
Erbium (68)	Er 169	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Er 171	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Europium (63)	Eu 152	S	1 x 10 ⁻⁸
	(T/2=9.2 hrs)	Ι	1 x 10 ⁻⁸
	Eu 152	S	4 x 10 ⁻¹⁰
	(T/2=13 yrs)	Ι	6 x 10 ⁻¹⁰
	Eu 154	S	1 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
	Eu 155	S	3 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
Fermium (100)	Fm 254	S	2 x 10 ⁻⁹
		Ι	2 x 10 ⁻⁹
	Fm 255	S	6 x 10 ⁻¹⁰
		Ι	4 x 10 ⁻¹⁰
	Fm 256	S	$1 \ge 10^{-10}$
		Ι	6 x 10 ⁻¹¹
Fluorine (9)	F 18	S	2 x 10 ⁻⁷
		Ι	9 x 10 ⁻⁸
Gadolinium (64)	Gd 153	S	8 x 10 ⁻⁹
		Ι	3×10^{-9}
	Gd 159	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Gallium (31)	Ga 72	S	8 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
Germanium (32)	Ge 71	S	$4 \ge 10^{-7}$
		Ι	2×10^{-7}
Gold (79)	Au 196	S	4 x 10 ⁻⁸
		Ι	2×10^{-8}
	Au 198	S	1 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
	Au 199	S	4 x 10 ⁻⁸

Hafnium (72)Hf 181S1 x 10^{-9} Holmium (67)Ho 166S $7x 10^{-9}$ Hydrogen (1)H3S $2 x 10^{-7}$ Indium (49)In 113mS $3 x 10^{-7}$ I $2 x 10^{-7}$ Sub $4 x 10^{-5}$	
Holmium (67) Ho 166 Ho 10 ⁻⁹ I 6 x 10 ⁻⁹ I 6 x 10 ⁻⁹ I 2 x 10 ⁻⁷ Sub 4 x 10 ⁻⁷ Sub 4 x 10 ⁻⁷ I 2 x 10 ⁻⁷	
Holmium (67)Ho 166S $7x 10^{-9}$ Hydrogen (1)H3S $2 x 10^{-7}$ Hydrogen (1)H3S $2 x 10^{-7}$ Indium (49)In 113mS $3 x 10^{-7}$ Indium (49)In 113mS $3 x 10^{-7}$	
Hydrogen (1) H3 Indium (49) H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3	
Hydrogen (1)H3S 2×10^{-7} I 2×10^{-7} IIndium (49)In 113mS3 × 10^{-7}II 2×10^{-7}	
Indium (49) In 113m I 2×10^{-7} Sub 4×10^{-5} Sub 3×10^{-7} I 2×10^{-7}	
Indium (49) In 113m Sub 4×10^{-5} I 3×10^{-7} I 2×10^{-7}	
Indium (49) In 113m S 3×10^{-7} I 2×10^{-7}	
I 2×10^{-7}	
In 114m S 4 x 10 ⁻⁹	
I 7 x 10 ⁻¹	0
In 115m S 8 x 10 ⁻⁸	
I 6 x 10 ⁻⁸	
In 115 S 9 x 10 ⁻⁹	
I 1 x 10 ⁻⁹	
Iodine (53) I 125 S 8 x 10 ⁻¹	1
I 6 x 10 ⁻⁹	
I 126 S 9×10^{-1}	1
I 1 x 10 ⁻⁸	
I 129 S 2×10^{-1}	1
I 2 x 10 ⁻⁹	
I 131 S 1 x 10 ⁻¹	0
I 1 x 10 ⁻⁸	
I 132 S 3 x 10 ⁻⁹	
I 3 x 10 ⁻⁸	
I 133 S 4×10^{-11}	0
I 7 x 10 ⁻⁹	
I 134 S 6 x 10 ⁻⁹	
I 1 x 10 ⁻⁷	
I 135 S 1 x 10 ⁻⁹	
I 1 x 10 ⁻⁸	
Iridium (77) Ir 190 S 4 x 10 ⁻⁸	
I 1 x 10 ⁻⁸	
Ir 192 S 4 x 10 ⁻⁹	
I $9 \ge 10^{-11}$	0
Ir 194 S 8 x 10 ⁻⁹	
I 5 x 10 ⁻⁹	
Iron (26) Fe 55 S 3 x 10 ⁻⁸	
I 3×10^{-8}	
Fe 59 S 5×10^{-9}	
I 2 x 10 ⁻⁹	
Krypton (36) Kr 85m Sub 1x 10 ⁻⁷	
Kr 85 Sub 3 x 10 ⁻⁷	

	Kr 87	Sub	2 x 10 ⁻⁸
	Kr 88	Sub	2 x 10 ⁻⁸
Lanthanum (57)	La 140	S	5x 10 ⁻⁹
		Ι	4 x 10 ⁻⁹
Lead (82)	Pb 203	S	9x 10 ⁻⁸
		Ι	6 x 10 ⁻⁸
	Pb 210	S	4x 10 ⁻¹²
		Ι	8 x 10 ⁻¹²
	Pb 212	S	6 x 10 ⁻¹⁰
		Ι	7 x 10 ⁻¹⁰
Lutetium (71)	Lu 177	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Manganese (25)	Mn 52	S	7 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
	Mn 54	S	1 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁹
	Mn 56	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Mercury (80)	Hg 197m	S	3×10^{-8}
		Ι	3×10^{-8}
	Hg 197	S	$4 \ge 10^{-8}$
		I	9 x 10 ⁻⁸
	Hg 203	S	2 x 10 ⁻⁹
		I	4 x 10 ⁻⁹
Molybdenum (42)	Mo 99	S	3×10^{-6}
		I	7×10^{-9}
Neodymium (60)	Nd 144	S	3×10^{-12}
	21147	l	1×10^{-11}
	Nd 14/	S	1×10^{-9}
	N1140	l C	8×10^{-9}
	Nd 149	S	6×10^{-8}
Nantaniana (02)	N., 227	l S	5 X 10 [°]
Neptunium (93)	Np 237	5 1	1×10^{-12}
	N., 220	l C	4×10^{-1}
	Np 239	5 1	$3 \times 10^{\circ}$
Nielrol (28)	N: 50	l S	2×10^{-8}
Nickel (28)	NI 39	S I	2×10^{-8}
	N: 62	I S	3×10^{-9}
	NI 05	S I	2×10 1 x 10 ⁻⁸
	Ni 65	I S	1×10 3×10^{-8}
	111 05	ы Т	3×10 2×10^{-8}
Niohium	Nh 93m	r S	$\frac{2}{4} \times 10^{-9}$
(Columbium)(41)	110 75111	5	тл IU

		т	5 x 10 ⁻⁹
	Nih 05	l S	3×10^{-8}
	NU 95	S I	2×10^{-9}
	NIL 07	I S	3×10^{-7}
	NO 97	S I	2×10^{-7}
	0.105	I C	2×10^{-7}
Osmium (76)	Os 185	S	$2 \times 10^{\circ}$
	0 101	l	2×10^{-9}
	Os 191m	S	6 x 10 ⁻⁷
		I	3 x 10 ⁻⁷
	Os 191	S	4 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Os 193	S	1 x 10 ⁻⁸
		Ι	9 x 10 ⁻⁹
Palladium (46)	Pd 103	S	5 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁸
	Pd 109	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Phosphorus (15)	P 32	S	2 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
Platinum (78)	Pt 191	S	3 x 10 ⁻⁸
	-	I	2 x 10 ⁻⁸
	Pt 193m	S	2×10^{-7}
		ĩ	2×10^{-7}
	Pt 193	S	4×10^{-8}
	1 (1) 5	I	1×10^{-8}
	Dt 107m	S	2×10^{-7}
	1 t 1 / / 111	I I	2×10^{-7}
	Dt 107	I S	2×10^{-8}
	Ft 197	З Т	3×10^{-8}
\mathbf{D}_{1}	D., 120	l S	2×10^{-14}
Plutonium (94)	Pu 238	5	/ X 10 ⁻¹
	D 220	l	1×10^{12}
	Pu 239	S	6×10^{-14}
	D 0 40	l	1×10^{-12}
	Pu 240	S	6×10^{-14}
		Ι	$1 \ge 10^{-12}$
	Pu 241	S	3×10^{-12}
		Ι	1 x 10 ⁻⁹
	Pu 242	S	6 x 10 ⁻¹⁴
		Ι	1 x 10 ⁻¹²
	Pu 243	S	6 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁸
	Pu 244	S	6 x 10 ⁻¹⁴
		Ι	1 x 10 ⁻¹²
Polonium (84)	Po 210	S	2 x 10 ⁻¹¹
()			

		T	7×10^{-12}
Potassium (19)	К 42	S	7×10^{-8}
i otassium (17)	IX 72	I	4×10^{-9}
Praseodymium (59)	Pr 147	S	7×10^{-9}
Traseodymium (57)	11 172	I	5×10^{-9}
	$P_{r} 1/3$	S	1×10^{-8}
	11 143	S I	6×10^{-9}
Promethium (61)	Pm 1/7	r S	0×10^{-9}
Tomethum (01)	1 111 14/	S I	2×10^{-9}
	$D_{m} = 1.40$	I S	3×10^{-8}
	F III 149	S I	1×10^{-9}
Protocotining (01)	D. 220	l C	6 X 10
Protoactinium (91)	Pa 250	5 1	0×10^{-11}
	D- 001		3 X 10 ⁻¹⁴
	Pa 231	5	4×10^{-12}
	D 000	I C	4 X 10 ¹²
	Pa 233	S	$2 \times 10^{\circ}$
	D 000	l	6×10^{-11}
Radium (88)	Ra 223	S	6×10^{-11}
		1	8×10^{-12}
	Ra 224	S	2×10^{-10}
		Ι	2×10^{-11}
	Ra 226	S	3×10^{-12}
		Ι	$2 \ge 10^{-12}$
	Ra 228	S	$2 \ge 10^{-12}$
		Ι	$1 \ge 10^{-12}$
Radon (86)	Rn 220	S	1 x 10 ⁻⁸
	Rn 222 ³	3 x 10 ⁻⁹	3 x 10 ⁻⁹
Rhenium (75)	Re 183	S	9 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁹
	Re 186	S	2 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
	Re 187	S	3 x 10 ⁻⁷
		Ι	2 x 10 ⁻⁸
	Re 188	S	1 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁹
Rhodium (45)	Rh 103m	S	3 x 10 ⁻⁶
		Ι	2 x 10 ⁻⁶
	Rh 105	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Rubidium (37)	Rb 86	S	1 x 10 ⁻⁸
× /		Ι	2 x 10 ⁻⁹
	Rb 87	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
Ruthenium (44)	Ru 97	S	8 x 10 ⁻⁸
			-

		T	6 x 10 ⁻⁸
	Ru 103	S	2×10^{-8}
	1	Ĩ	3×10^{-9}
	Ru 105	S	2×10^{-8}
		Ι	2 x 10 ⁻⁸
	Ru 106	S	3 x 10 ⁻⁹
		Ι	2 x 10 ⁻¹⁰
Samarium (62)	Sm 147	S	2 x 10 ⁻¹²
()		Ι	9 x 10 ⁻¹²
	Sm 151	S	2 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
	Sm 153	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Scandium (21)	Sc 46	S	8 x 10 ⁻⁹
		Ι	8 x 10 ⁻¹⁰
	Sc 47	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
	Sc 48	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
Selenium (34)	Se 75	S	4 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
Silicon (14)	Si 31	S	2 x 10 ⁻⁷
		Ι	3 x 10 ⁻⁸
Silver (47)	Ag 105	S	2 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁹
	Ag 110m	S	7 x 10 ⁻⁹
		Ι	3 x 10 ⁻¹⁰
	Ag 111	S	1 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
Sodium (11)	Na 22	S	6 x 10 ⁻⁹
		Ι	3 x 10 ⁻¹⁰
	Na 24	S	4 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁹
Strontium (38)	Sr 85m	S	1 x 10 ⁻⁶
		Ι	1 x 10 ⁻⁶
	Sr 85	S	8 x 10 ⁻⁹
		Ι	4 x 10 ⁻⁹
	Sr 89	S	3 x 10 ⁻¹⁰
		Ι	1 x 10 ⁻⁹
	Sr 90	S	3 x 10 ⁻¹¹
		Ι	2 x 10 ⁻¹⁰
	Sr 91	S	2 x 10 ⁻⁸
		Ι	9 x 10 ⁻⁹
	Sr 92	S	2 x 10 ⁻⁸

Sulfur (16)S 35S9 x 10-9Tantalum (73)Ta 182S1 x 10-9Technetium (43)Te 96mS3 x 10-6Te 96S2 x 10-8I1 x 10-6Te 97mS8 x 10-9Te 97mS8 x 10-9Te 97mS8 x 10-9Te 97mS8 x 10-7I1 x 10-6Te 97mS4 x 10-7I1 x 10-8I5 x 10-9Te 99mS7 x 10-8I2 x 10-9S7 x 10-8I2 x 10-9Te 125mS1 x 10-9Te 127mS5 x 10-9I1 x 10-9Te 127mS5 x 10-9I1 x 10-9Te 129mS3 x 10-9I1 x 10-9Te 129S2 x 10-7I1 x 10-9Te 131mII1 x 10-9Te 132STe 131mSI4 x 10-9Te 131mII4 x 10-9Ta 1201SS9 x 10-8I1 x 10-9Th 200SS9 x 10-8I1 x 10-9Th 201STa 1201STa 1202SI8 x 10-8Th 204SI9 x 10-10Th 228SS3 x 10-12Th 228STh 208S <th></th> <th></th> <th>T</th> <th>1 x 10⁻⁸</th>			T	1 x 10 ⁻⁸
Tantalum (73)Ta 182I 9×10^{-9} Tantalum (73)Ta 182S 1×10^{-10} Technetium (43)Tc 96mS 3×10^{-6} Te 97mS 8×10^{-9} Te 97mS 8×10^{-9} Te 97mS 4×10^{-7} Te 97mS 4×10^{-9} Te 97mS 4×10^{-7} Te 97mS 4×10^{-9} Te 99mS 1×10^{-6} Te 99mS 1×10^{-8} Te 99mS 1×10^{-8} Te 125mS 1×10^{-9} Te 127mS 5×10^{-9} Te 127mS 3×10^{-8} Te 129mS 3×10^{-9} Te 129mS 3×10^{-9} Te 131mS 1×10^{-9} Te 132S 7×10^{-9} Te 132S 7×10^{-9} Thallium (81)Tl 200STh 202S 3×10^{-9} Thorium (90)Th 227STh 228S 3×10^{-13}	Sulfur (16)	S 35	S	9 x 10 ⁻⁹
Tantalum (73)Ta 182S1 x 10^{-9} Technetium (43)Tc 96mS3 x 10^6 Te 96S2 x 10^8 Te 97mS8 x 10^{-9} Tc 97mS8 x 10^9 Tc 97mS4 x 10^{-7} Tc 97mS4 x 10^{-7} Tc 97mS4 x 10^{-7} Tc 97mS4 x 10^{-7} Tc 99mS1 x 10^{-8} Tc 99mS1 x 10^{-8} Tc 99mS1 x 10^{-8} Te 125mS1 x 10^{-9} Te 127mS5 x 10^{-9} Te 129mS3 x 10^{-9} Te 129mS3 x 10^{-9} Te 129mS2 x 10^{-7} Te 131mS1 x 10^{-7} Te 132S7 x 10^{-9} Te 132S7 x 10^{-9} Thallium (65)Tb 160STh 200S9 x 10^{-8} Th 201S7 x 10^{-8} Thallium (81)T1 200STh 227S3 x 10^{-9} Th 228S3 x 10^{-13}		~ ~ ~ ~	Ĩ	9 x 10 ⁻⁹
Internation (0)Internation (1)Internation (1)Technetium (43)Te 96S 3×10^6 Te 96S 2×10^8 I 8×10^9 Te 97mS 8×10^9 Te 97mS 8×10^9 Te 97mS 4×10^7 I 1×10^8 Te 99mS 1×10^8 Te 99mS 1×10^7 Te 99S 7×10^8 I 2×10^9 STellurium (52)Te 125mSTe 127mS 5×10^9 I 1×10^9 Te 127S 6×10^8 I 3×10^8 Te 129mS 3×10^9 I 1×10^7 Te 129S 2×10^7 I 1×10^7 Te 131mS 1×10^9 Te 132S 7×10^8 I 4×10^9 Te 132S 7×10^9 I 1×10^7 Thallium (81)Tl 200SS 3×10^8 Th 201S 3×10^8 I 2×10^8 I 3×10^8 I 3×10^8 I 3×10^8 I 3×10^7 I 1×10^{-10} Thorium (90)Th 227Th 228SS 3×10^{-13}	Tantalum (73)	Ta 182	S	1 x 10 ⁻⁹
Technetium (43)Tc 96mS 3×10^{-6} Tc 97mS 8×10^{-8} Tc 97mS 8×10^{-9} Tc 97mS 4×10^{-7} Tc 97S 4×10^{-7} T 11 \times 10^{-6}Tc 99mS1 \times 10^{-6}Tc 99mS1 \times 10^{-6}Tc 99mS1 \times 10^{-6}Tc 99mS1 \times 10^{-6}Tc 99S7 \times 10^{-8}Tellurium (52)Te 125mSTe 127mS5 \times 10^{-9}Te 127mS5 \times 10^{-9}Te 127mS5 \times 10^{-9}Te 129mS3 \times 10^{-8}Te 129mS3 × 10^{-9}Te 129mS3 × 10^{-9}Te 131mS1 × 10^{-9}Te 132S7 × 10^{-8}Ta 100mS9 × 10^{-8}Ta 1200S9 × 10^{-8}Ti 201S7 × 10^{-8}Ti 202S3 × 10^{-8}Ti 204S2 × 10^{-8}Thorium (90)Th 227STh 228S3 × 10^{-13}			I	7×10^{-10}
Tension (C)TensionI1 $x 10^6$ Te 97mS 2×10^8 I 8×10^9 Te 97mS 8×10^8 I 5×10^9 Te 97mS 4×10^7 I 1×10^8 Te 99mS 1×10^6 I 5×10^7 Te 99mS 1×10^6 I 5×10^7 Te 99S 7×10^8 I 2×10^9 I 1×10^9 Te 127mS 5×10^9 I 1×10^9 Te 127mS 5×10^9 I 1×10^9 Te 129mS 3×10^8 Te 129mS 2×10^7 I 1×10^7 Te 131mS 1×10^9 Te 132S 7×10^8 I 4×10^9 Te 132S 7×10^8 I 4×10^9 Te 132S 7×10^8 I 4×10^9 Th 200S 9×10^{16} I 1×10^9 Th 201S 7×10^8 I 3×10^8 Th 204S 2×10^8 I 9×10^{10} Th 228S 3×10^{13}	Technetium (43)	Tc 96m	S	3 x 10 ⁻⁶
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10,000	Ĩ	1×10^{-6}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Тс 96	S	2×10^{-8}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		/ /	T	8 x 10 ⁻⁹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Tc 97m	S	8 x 10 ⁻⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10 9 / 111	ĩ	5 x 10 ⁻⁹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Тс 97	S	4×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10) /	I	1×10^{-8}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Tc 99m	S	1×10^{-6}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ĩ	5×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Тс 99	S	7×10^{-8}
Tellurium (52)Te 125mI 1×10^{-8} I4 x 10^{-9}Te 127mSS5 x 10^{-9}I1 x 10^{-9}Te 127S6 x 10^{-8}I3 x 10^{-8}I1 x 10^{-9}Te 129mSS2 x 10^{-7}I1 x 10^{-9}Te 129SZ x 10^{-7}I1 x 10^{-7}Te 131mSI6 x 10^{-9}Te 132STe 132SI4 x 10^{-9}I1 x 10^{-9}Thallium (81)Tl 200I4 x 10^{-8}I2 x 10^{-8}I1 x 10^{-8}I1 x 10^{-8}I1 x 10^{-8}I1 x 10^{-8}I1 0 0S9 x 10^{-8}I1 0 0I1 0 0I1 0 0 0 <t< td=""><td></td><td>10))</td><td>I</td><td>7×10^{-9}</td></t<>		10))	I	7×10^{-9}
renarioIIIIIIIITe 127mS 5×10^{-9} II x 10^{-9}Te 127S 6×10^{-8} I3 x 10^{-9}Te 129mS3 x 10^{-9}I1 x 10^{-9}Te 129S2 x 10^{-7}I1 x 10^{-9}Te 129S2 x 10^{-7}I1 x 10^{-8}I6 x 10^{-9}Te 131mS1 x 10^{-8}I6 x 10^{-9}I4 x 10^{-9}Te 132S7 x 10^{-9}I4 x 10^{-9}Thallium (81)Tl 200SI1 x 10^{-8}Tl 201S7 x 10^{-8}I3 x 10^{-8}I1 x 10^{-9}Th 204S2 x 10^{-10}Thorium (90)Th 227S1 x 10^{-11}Th 228S3 x 10^{-13}	Tellurium (52)	Te 125m	S	1×10^{-8}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tenurium (52)	10 125111	I I	1×10^{-9}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Te 127m	r S	5×10^{-9}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10 12/11	S I	3×10^{-9}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		To 1 77	I S	1×10^{-8}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1012/	Т	0×10 2 x 10 ⁻⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T. 120	l S	$3 \times 10^{\circ}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1e 129m	5	3×10^{-9}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T 100	l	1×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Te 129	S	2×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T (A)	l	1×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Te 131m	S	1 x 10 ⁻⁶
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			I	6 x 10 ⁻⁹
Terbium (65)Tb 160I 4×10^{-9} Thallium (81)Tl 200S 9×10^{-8} I 4×10^{-9} I 4×10^{-9} Thallium (81)Tl 200S 9×10^{-8} I 4×10^{-8} I 4×10^{-8} Tl 201S 7×10^{-8} I 3×10^{-8} I 3×10^{-8} I 8×10^{-9} Tl 202S 3×10^{-8} I 9×10^{-10} Thorium (90)Th 227STh 228S 3×10^{-13}		Te 132	S	7 x 10 ⁻⁹
Terbium (65)Tb 160S 3×10^{-9} I1 x 10^{-9}Thallium (81)Tl 200S9 x 10^{-8}I4 x 10^{-8}Tl 201ST 202STl 202SS3 x 10^{-8}I8 x 10^{-9}Tl 204SI9 x 10^{-10}Thorium (90)Th 227S1 x 10^{-11}I6 x 10^{-12}Th 228S3 x 10^{-13}			Ι	4 x 10 ⁻⁹
I 1×10^{-9} Thallium (81)TI 200S 9×10^{-8} I 4×10^{-8} I 4×10^{-8} TI 201S 7×10^{-8} I 3×10^{-8} I 3×10^{-8} I 8×10^{-9} TI 202S 3×10^{-8} I 8×10^{-9} TI 204S 2×10^{-8} I 9×10^{-10} Th 227S 1×10^{-11} I 6×10^{-12} Th 228S 3×10^{-13}	Terbium (65)	Tb 160	S	3 x 10 ⁻⁹
Thallium (81)Tl 200S 9×10^{-8} I4 x 10^{-8}Tl 201S7 x 10^{-8}I3 x 10^{-8}Tl 202S3 x 10^{-8}I8 x 10^{-9}Tl 204S2 x 10^{-8}I9 x 10^{-10}Th 227S16 x 10^{-12}Th 228S3 x 10^{-13}			Ι	1 x 10 ⁻⁹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Thallium (81)	T1 200	S	9 x 10 ⁻⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ι	4 x 10 ⁻⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T1 201	S	7 x 10 ⁻⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ι	3 x 10 ⁻⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T1 202	S	3 x 10 ⁻⁸
Thorium (90) Th 227 S 2×10^{-8} $I 9 \times 10^{-10}$ $I 5 1 \times 10^{-11}$ $I 6 \times 10^{-12}$ Th 228 S 3×10^{-13}			Ι	8 x 10 ⁻⁹
Thorium (90) Th 227 I 9 x 10^{-10} Th 227 S 1 x 10^{-11} I 6 x 10^{-12} Th 228 S 3 x 10^{-13}		T1 204	S	2 x 10 ⁻⁸
Thorium (90)Th 227S 1×10^{-11} I 6×10^{-12} Th 228S3 x 10^{-13}			Ι	9 x 10 ⁻¹⁰
Th 228 S 3×10^{-12}	Thorium (90)	Th 227	S	1 x 10 ⁻¹¹
Th 228 S 3×10^{-13}	~ /		Ι	6 x 10 ⁻¹²
		Th 228	S	3 x 10 ⁻¹³

		I	2×10^{-13}
	Th 230	S	2×10^{-14}
	111 250	I	3×10^{-13}
	Th 231	S	5×10^{-8}
	111 23 1	I I	4×10^{-8}
	Th 727	I S	$\frac{4}{1} \times 10^{-12}$
	111 252	ъ т	1×10^{-12}
	The material	I C	1×10 2 - 10 ⁻¹²
	In natural	5 1	2×10^{-12}
	T1 004	I C	2×10^{12}
	1h 234	S	2×10^{-9}
	— 4– 0	l ~	1×10^{-9}
Thulium (69)	Tm 170	S	1×10^{-9}
		I	1 x 10 ⁻⁹
	Tm 171	S	$4 \ge 10^{-9}$
		Ι	8 x 10 ⁻⁹
Tin (50)	Sn 113	S	1 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
	Sn 125	S	4 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
Tungsten (Wolfram) (74)	W 181	S	8 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
	W 185	S	3 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
	W 187	S	2 x 10 ⁻⁸
		I	1 x 10 ⁻⁸
Uranium (92)	U 230	S	1×10^{-11}
(<i>j</i> <u>2</u>)	0 200	ĩ	4×10^{-12}
	11 232	S	3×10^{-12}
	0 232	I	9×10^{-13}
	11 233	S	2×10^{-11}
	0 233	I I	4×10^{-12}
	11 224	r S ⁴	4×10^{-11}
	0 234	S I	2×10^{-12}
	11 225	1 S ⁴	4×10^{-11}
	0 255	З т	2×10 $4 \approx 10^{-12}$
	11.000	I C	4×10^{-11}
	0 236	5	2×10^{-12}
	11.220	\mathbf{I}	4×10^{12}
	0 238	S ¹	3×10^{12}
	TT 0 40	I G	3×10^{-12}
	U 240	S	8 x 10 ⁻⁹
		I ~1	6 x 10 ⁻⁹
	U-natural	S^4	$5 \ge 10^{-12}$
		Ι	5×10^{-12}
Vanadium (23)	V 48	S	6 x 10 ⁻⁹

		Ι	2 x 10 ⁻⁹
Xenon (54)	Xe 131m	Sub	4 x 10 ⁻⁷
	Xe 133	Sub	3 x 10 ⁻⁷
	Xe 133m	Sub	3 x 10 ⁻⁷
	Xe 135	Sub	1 x 10 ⁻⁷
Ytterbium (70)	Yb 175	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Yttrium (39)	Y 90	S	4 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
	Y 91m	S	8 x 10 ⁻⁷
		Ι	6 x 10 ⁻⁷
	Y 91	S	1 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁹
	Y 92	S	1 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Y 93	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
Zinc (30)	Zn 65	S	4 x 10 ⁻⁹
		I	2 x 10 ⁻⁹
	Zn 69m	S	1 x 10 ⁻⁸
		Ĩ	1×10^{-8}
	Zn 69	S	2×10^{-7}
		I	3×10^{-7}
Zirconium (40)	Zr 93	S	4×10^{-9}
		I	1×10^{-8}
	Zr 95	S	4×10^{-9}
		I	1×10^{-9}
	Zr 97	S	4×10^{-9}
		I	3×10^{-9}
Any single radionuclide		Sub	3×10^{-6}
not listed above with		Sub	J X 10
doory mode other then			
alpha emission or			
appla chillssion of			
with radio active half			
Vith radio- active half-			
life less than 2 hours.			
			1 w 10-10
Any single redispusid-			1 X 10 °
Any single radionuclide			
not instea above with			
decay mode other than			
alpha emission or			
spontaneous fission and			
with radio- active half-			

life greater than 2 hours.

	Any s not li decay or spe	single radionuclide sted above, which vs by alpha emission ontaneous fission.	2 x 10 ⁻¹⁴
381 382 383	¹ Solub	ble (S); Insoluble (I).	
383 384 385 386	² "Sub' mater	' means that values given are for subm rial.	ersion in a semispherical infinite cloud of airborne
387 388 389 390 391 392 393	³ These short- (A "w polon the de partic	e radon concentrations are appropriate lived daughters. The value may be re- vorking level" is defined as any combin- tium-218, lead-214, bismuth-214 and p egree of equilibrium, that will result in the energy.	for protection from radon-222 combined with its blaced by one-thirtieth $(1/30)$ of a "working level." nation of short-lived radon-222 daughters, olonium-214, in one liter of air, without regard to the ultimate emission of 1.3 x 10^5 MeV of alpha
394 395 396 397	⁴ For so factor specia for ot	bluble mixtures of U-238, U-234 and U c. The concentration value is 0.007 mi fic activity for natural uranium is 6.77 her mixtures of U-238, U-235 and U-2	 U-235 in air chemical toxicity may be the limiting ligrams uranium per cubic meter of air. The x 10⁻⁷ curies per gram U. The specific activity (SA) 34, if not known, will be:
398 399		SA=3.6 x 10 ⁻⁷ curies/gram U	U-depleted
400 401 402		SA= $(0.4 + 0.38 \text{ E} + 0.0034 \text{ E}^2) 10^{-6}$	$E \ge 0.72$
403	V	where E is the percentage by weight of	U-235, expressed as percent.
405 406 407	NOTE Appen	: Where a mixture in air of more than dix should be determined as follows:	one radionuclide exists, the limiting values of this
408 409 410 411 412 413	1.	If the identity and concentration of ea limiting values should be derived as f mixture, the ratio between the quantit established in Appendix A for the spe of such ratios for all the radionuclider	ch radionuclide in the mixture are known, the follows: Determine, for each radionuclide in the y present in the mixture and the limit otherwise cific radionuclide when not in a mixture. The sum in the mixture may not exceed "1" (i.e., "unity").
414 415		EXAMPLE: If radionuclides A, B, a the applicable MPC's are MPC _A , and	nd C are present in concentrations C_A , C_B , C_C , and if MPC _B , and MPC _C respectively, then the

416		concentrations must be limited so that the following relationship exists:			
417 418		$(C_A/MPC_A) + (C_B/MPC_B) + (C_C/MPC_C) \le 1$			
419 420 421	2.	If either the identity or the concentration of any radionuclide in the mixture is not known the limiting values of Appendix A must be 2×10^{-14} .			
422 423 424 425	3.	If any of the conditions specified below are met, the corresponding values specified below may be used in lieu of those specified in paragraph 2 above.			
425 426 427 428 429 420		a. If the identity of each radionuclide in the mixture is known but the concentration of one or more of the radionuclides in the mixture is not known, the concentration limit for the mixture is the limit specified in Appendix A for the radionuclide in the mixture having the lowest concentration limit; or			
430 431 432 433 434 435 435		b. If the identity of each radionuclide in the mixture is not known, but it is known that radionuclides specified in Appendix A are not present in the mixture, the concentration limit for the mixture is the lowest concentration limit specified in Appendix A for any radionuclide which is not known to be absent from the mixture; or			
430 437 428		c. Element (atomic number) and isotope. µCi/ml			
438		If it is known that alpha-emitters and Sr 90, I 129, Pb 210, Ac 1×10^{-10} 227, Ra 228, Pa 230, Pu 241, and Bk are not present.			
		If it is known that alpha-emitters and Pb 210, Ac 227, Ra 228, 1×10^{-11} and Pu 241 are not present.			
		If it is known that alpha-emitters and Ac 227 are not present. 1×10^{-12}			
120		If it is known that Ac 227, Th 230, Pa 231, Pu 238, Pu 239, Pu 1 x 10 ⁻¹³ 240, Pu 242, Pu 244, Cm 248, Cf 249 and Cf 251 are not present.			
439 440 441 442 443	4.	If a mixture of radionuclides consists of uranium and its daughters in ore dust before chemical separation of the uranium from the ore, the following values may be used for uranium and its daughters through radium-226, instead of those from paragraphs 1, 2, or 3 above:			
445 446		3 x 10-12 μ Ci/ml gross alpha activity; 2 x 10-12 μ Ci/ml natural uranium; or 3 micrograms per cubic meter of air natural uranium.			
447 448	5.	For this note, a radionuclide may be considered as not present in a mixture if:			

1st Notice

449		
450	a.	the ratio of the concentration of that radionuclide in the mixture (CA) to the
451		concentration limit for that radionuclide specified in Appendix A (MPCA) does
452		not exceed $1/10$ (i.e., CA/MPCA \leq than $1/10$), and
453		
454	b.	the sum of such ratios for all the radionuclides considered as not present in the
455		mixtures does not exceed 1/4, (i.e., (CA/MPCA + CB/MPCB + < than 1/4).
456		
457		
458	(Sourc	e: Amended at 46 Ill. Reg, effective)

		\mathcal{D}
ILLINOIS RE	GISTER1 st Notice	JCAR351000-2206867r01
	POLLUTION CONTROL BO	ARD
	NOTICE OF PROPOSED AMEN	DMENTS
0	TITLE 35: ENVIRONMENTAL PR	OTECTION
1	SUBTITLE I: ATOMIC RADIA	ATION
2	CHAPTER I: POLLUTION CONTR	OL BOARD
3 1	DADT 1000	
5	RADIATION HAZARDS	5
6		, ,
7	SUBPART A: GENERAL PROV	/ISIONS
8		
9Section		
101000.101	Authority	
111000.102	Purpose-and Policy	
121000.105	Scope	
13	SUBPART B: DEFINITIO	NS
15		
16Section		
171000.201	Definitions	
181000.202	Incorporations by Reference	
19		
20	SUBPART C: STANDARDS AND L	IMITATIONS
21 22Section		
223000 301	Permissible Permissable Levels of Radiation in	n Unrestricted Areas
241000.302	Radioactive Emissions to Unrestricted Areas	in Onicstricted Areas
25		
26	SUBPART D: ADDITIONAL REQU	JIREMENTS
27		
28Section		
291000.401	Applicability	
301000.402	Definitions	1
311000.403 22	Environmental Standards for Uranium Fuel Cy	ycie
32 33	SURDADT E. DECODO	8
34	SOBLART E. RECORD.	5
35Section		
361000.501	Records	
371000.502	Notification of Incidents	

JCAR351000-2206867r01

ILLINOIS REGISTER 1st Notice_

POLLUTION CONTROL BOARD

381000.5	503	Other Provisi	ons
39 401000			Commenter times in Air Alexan Nature 1 Declarences 1
401000.4	APPEN	DIX A	Concentrations in Air Above Natural Background
		V. Immlananti	a Spatian 25(h) and outhonized by Spatian 27 of the Environmental
42AUIE	tion A	r: Implementing	ig Section 25(b) and authorized by Section 27 of the Environmental
43Protec	tion Ac	1 [415 ILCS 5/	23 (0) and 27].
44 45SOUD		donted in D82	2 at 0 III Pag. 10201 offective December 4, 1085; emended in
455000	(D) of 1	1000000000000000000000000000000000000	2 at 9 III. Reg. 19391, effective December 4, 1983, amended in
40K82-2 47	(D) at 1 —. ef	fective	so, effective July 21, 1980, amended in K18-28 at 40 m. Keg.
48	, •		
49		S	UBPART A: GENERAL PROVISIONS
50			
51Sectio	n 1000	.101 Authorit	y
52			
53The Pe	ollution	Control Board	adopts the rules and regulations contained in this title under
54 pursua	int to th	e authority of 7	Title VI-A of the Environmental Protection Act. [415 ILCS 5/25(b)].
55 (III. R	ev. Stat	. 1983, ch. 111	- 1/2, par. 1025(b)).
56			
57	(Sour	ce: Amended a	at 46 Ill. Reg, effective)
58			
59Sectio	n 1000	.102 Purpose-	and Policy
60			
61	a)	This The regu	lations in this This Part establishes establish standards for protection
62		against radiol	ogical air pollutants associated with materials and activities under
63		licenses issue	d by the United States Nuclear Regulatory Commission (NRC)
64		under pursuar	tt to the Atomic Energy Act of 1954 (42 U.S.C. 5801 <i>et seq.</i>) as
65		amended , and	the Energy Reorganization Act of 1974 (42 U.S.C. 5801 et seq.)
66	1 \	D	
67	b)	Persons <u>It is t</u>	he policy of the Pollution Control Board that persons subject to this
68		Part must sha	II, in addition to comply complying with the requirements of this
69 70		Part and; mak	e every reasonable effort to maintain radiation exposures in, and
/0		releases of rac	dioactive materials to, unrestricted areas as low as is reasonably
/1		achievable. I	he term "as low as is reasonably achievable" means the lowest
12		radiation expo	osure levels as low as is reasonably achievable <u>consideringtaking</u>
13 74		in relation to 1	benefits to the public health and sofety, and other societal and
/4 75		in relation to	benefits to the public health and safety, and other societal and
/5		socioeconomi	c considerations, in relation to the utilization of atomic energy in the

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

114	
115	"Dose" means the quantity of radiation absorbed, per unit of mass, by the body or
116	by any portion of the body. Under this Part, When these regulations specify a
117	dose during a period of time, the dose means the total quantity of radiation
118	absorbed, per unit of mass, by the body or by any portion of the body during such
119	period of time. Several different units of dose are in current use. The Definitions
120	of-units of dose-as used in this Part these regulations are set forth in the
121	definitions of are "Rad" and "Rem"." as defined in this Section.
122	
123	
124	"Individual" means any human being.
125	
126	
127	"Licensed activity" means any activity engaged in under a general or specific
128	license issued by the NRC.
129	ý
130	
131	"Licensed facility" means any facility constructed or operated under a permit or a
132	general or specific license issued by the NRC.
133	
134	
135	"Licensed material" means any material received, possessed, used, or transferred
136	under a general or specific license issued by the NRC.
137	
138	
139	"Licensee" means any person to whom a permit or a general or specific license
140	has been issued by the NRC.
141	
142	
143	"NRC" means the United States Nuclear Regulatory Commission.
144	
145	
146	"Rad" means a measure of the dose of any radiation to body tissues in terms of the
147	energy absorbed per unit mass of the tissue. One rad is the dose corresponding to
148	the absorption of 100 ergs per gram of tissue. (One millirad (mrad) = 0.001 rad).
149	
150	
151	"Radiation" means any or all of the following: alpha rays, beta rays, gamma rays,

152	X-rays, neutrons, high-speed electrons, high-spe	ed protons, and other atomic
155	particles, but not sound of facto waves, of vision	le, initiated, of ultraviolet light.
154		
155	"De dissettive metanial" and "mediasetive amissis	nall maana any dusta nantiaulataa
150	fumos mists venera en cosos which monteneou	ins means any dusts, particulates,
157	fumes, mists, vapors, or gases which spontaneou	isty entit tomzing radiation.
150		
159	"Dom" moons a mossure of the dose of any joniz	ving radiation to body tiggue in
161	terms of its estimated biological effect relative to	a a dosa reasived from an
162	even avenue to one recentace of V rove. (One millir	(mrom) = 0.001 rom) The
162	relation of rom to other does units depends upon	the hield giant off eat under
164	consideration and upon the condition of irredicti	in the purpose of this Dort
104	any of the following is considered to be equival	ont to a daga of one rom:
105	any of the following is considered to be equivate	ent to a dose of one fem.
100	An experimentation of \mathbf{V} or ge	mma radiation.
107	All exposure to one roentgen of X- of ga	
160	Λ dose of one rad due to X gamma or	hata radiation.
109	A dose of one fad due to A-, gamma, of	octa faciation,
170	A dose of 0.1 rad due to neutrons or high	energy protons.
171	A dose of 0.1 fad due to neutrons of high	renergy protons,
172	A dose of 0.05 rad due to particles heavi	er than protons and with sufficient
174	energy to reach the lens of the eve. If it i	is more convenient to measure the
175	neutron flux, or equivalent, than to deter	mine the neutron dose in rads, one
176	rem of neutron radiation may for purpose	es of this Part be assumed to be
177	equivalent to 14 million neutrons per sou	are centimeter incident upon the
178	body: or, if there exists sufficient inform	ation is available to estimate with
179	reasonable accuracy the approximate dis	tribution in energy of neutrons,
180	the incident number of neutrons per squa	are centimeter equivalent to one
181	rem may be estimated from the following	g table.
182		
183	Neutron Flux Dose Equivalen	ts
184	-	
185 Neutron e	nergy (Mev) No. of Neutron per	Average flux to
186	square centimeter	deliver 100 millirem
187	equivalent to a dose	in 40 hours
188	of 1 rem (neutrons/cm ²)	(neutrons/cm ²)
189		

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

190			
191 —	Thermal	<u>970 x 10⁶</u>	670
192 —	0.0001	720 x 10⁶	
193 —	0.005	820 x 10⁶	
194 —	0.02	<u>400 x 10⁶</u>	
195 —	0.1	<u>120 x 10⁶</u>	
196 —	0.5	<u>43 x 10⁶</u>	
197 —	-1.0	<u>26 x 10⁶</u>	
198 —	2.5	<u> </u>	<u> </u>
199 —	-5.0	$\frac{26 \times 10^6}{26}$	
200 —	-7.5	$\frac{24 \times 10^6}{24 \times 10^6}$	
201 —		-24×10^{6}	
202 —	<u>10 to 30</u>	$\frac{14 \times 10^6}{10^6}$	
203			10

Neutron Flux Dose Equivalents			
<u>Neutron Energy</u> (Mev)	No. of Neutron per square centimeter equivalent to a dose of 1 rem (neutrons/cm ²)	<u>Average flux to deliver 100</u> <u>millirem in 40 hours</u> (neutron/cm ² per second	
	$ \begin{array}{r} 970 \times 10^{6} \\ \hline 720 \times 10^{6} \\ \hline 820 \times 10^{6} \\ \hline 120 \times 10^{6} \\ \hline 120 \times 10^{6} \\ \hline 26 \times 10^{6} \\ \hline 29 \times 10^{6} \\ \hline 26 \times 10^{6} \\ \hline 26 \times 10^{6} \\ \hline \end{array} $	<u>670</u> <u>500</u> <u>570</u> <u>280</u> <u>80</u> <u>30</u> <u>18</u> <u>20</u> <u>18</u>	
$\frac{7.5}{10.0}$ 10 to 30		<u> </u>	

204

205 206

207 208

209

"Restricted area" means any area, access to which is controlled by the licensee to protect for purposes of protection of individuals from exposure to radiation and radioactive materials. "Restricted area" must<u>shall</u> not include any areas used as residential quarters, although a separate room or rooms in a residential building may be set apart as a restricted area.

210	
211	
212 "Unrestricted area" means any area access to which is not controlled by the	e
213 licensee to protect <u>for purposes of protection of</u> , individuals from exposure	e to
214 radiation and radioactive materials, and any area used for residential quarter	ers.
215	
216 (Source: Amended at 46 Ill. Reg.—, effective)	
217	
218Section 1000.202 Incorporations by Reference	
219	
220The following materials are incorporated by reference. These incorporations by reference	do not
221 include any later amendments or editions:	
222	
223 a) Numerical Guides for Design Objectives and Limiting Conditions for Ope	rations
to Meet the Criterion "As Low as is Reasonably Achievable" for Radioacti	ive
225 Material in Light-Water-Cooled Nuclear Power Reactor Effluents, 10 CFR	R 50.
226 Appendix I (1984).	
227	
228 b) Rules of General Applicability to Domestic Licensing of Byproduct Mater	ial. 10
229 CFR 30 (1984).	, - •
230	
231 c) General Domestic Licenses for Byproduct Material, 10 CFR 31 (1984).	
232	
233 d) Specific Domestic Licenses to Manufacture or Transfer Certain Items Con	taining
234 Byproduct Material, 10 CFR 32 (1984).	0
235	
236 e) Specific Domestic Licenses of Broad Scope for Byproduct Material, 10 CH	FR 33
237 (1984).	
238	
239 f) Licenses for Industrial Radiography and Radiation Safety Requirements for	or
240 Industrial Radiographic Operations, 10 CFR 34 (1984).	
241	
242 g) Medical Use of Byproduct Material, 10 CFR 35 (1984).	
243	
244 h) Domestic Licensing of Source Material, 10 CFR 40 (1984).	
245	
246 i) Domestic Licensing of Production and Utilization Facilities. 10 CFR 50 (1	.984).
, , , , , , , , , , , , , , , , , , ,	-)-

ILLINOIS REGISTER 1st Notice_

POLLUTION CONTROL BOARD

248	j)	Environmental Protection Regulations for Domestic Licensing and Related
249		Regulatory Functions, 10 CFR 51 (1984).
250		
251	k)	Domestic Licensing of Special Nuclear Material, 10 CFR 70 (1984).
252	,	
253	(Sour	ce: Added at 46 Ill. Reg., effective
254	× ×	
255		SUBPART C: STANDARDS AND LIMITATIONS
256		
257Secti	on 1000	0.301 Permissible Levels of Radiation in Unrestricted Areas
258		
259A -No	person	must not is allowed to shall possess, use, receive, or transfer licensed material or
260engag	ge in lice	ensed activities in such manner as to create radiation levels in air in any unrestricted
261area:		
262		
263	a)	That could result in an Radiation levels in air such individual, would be likely;
264	,	when all radioactive emissions by the licensee are taken into account, receiving to
265		receive a dose to the whole body in excess of 0.5 rem in any one year;
266		
267	b)	That could result in Radiation levels in air which, if an individual were
268	,	continuously present in the area, could result, when all radioactive emissions by
269		the licensee are taken into account. in his receiving a dose in excess of 2
270		millirems in any one hour; or
271		
272	c)	That could result in Radiation levels in air which, if an individual were
273	,	continuously present in the area, could result, when all radioactive emissions by
274		licensee are taken into account. in his receiving a dose in excess of 100 millirems
275		in any seven consecutive days.
276		
277	(Sou	rce: Amended at 46 Ill. Reg.— , effective)
278		
279Secti	on 1000	0.302 Radioactive Emissions to Unrestricted Areas
280		
281	a)	A-No person must not-shall possess, use, receive, or transfer licensed material or
282	,	engage in licensed activities so as to release to air in an unrestricted area
283		radioactive material exceeding the concentration in concentrations which exceed
284		the limits specified in Appendix A of this Part. For purposes of this Section.
285		concentrations of radioactive material may be averaged over a period not greater

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

286 than one year. 287 288 For the purpose of this SectionSection, the concentration limits in b) 289 Appendix A-of this Part shall apply at the boundary of the restricted area. The 290 concentration of radioactive material discharged through a stack, pipe or similar 291 conduit may be determined for with respect to the point where the material leaves 292 the conduit. If the conduit discharges within the restricted area, the concentration 293 at the boundary may be determined by applying established factors for dilution, 294 dispersion, or decay between the point of discharge and the boundary. 295 (Source: Amended at 46 Ill. Reg.____, effective _____) 296 297 298 SUBPART D: ADDITIONAL REOUIREMENTS 299 300Section 1000.401 Applicability 301 302The provisions of This this SubpartpartSubpart applies apply to radiation doses received by 303members of the public in the general environment and to radioactive materials introduced into 304the general environment due to as the result of operations which are part of a nuclear fuel cycle. 305 (Source: Amended at 46 Ill. Reg., effective) 306 307 308Section 1000.402 Definitions 309 310As used in this Subpart: 311 312 "Curie" (Ci) means that quantity of radioactive material producing 37 billion 313 nuclear transformations per second. (One millicurie (mCi)=0.001 Ci.) 314 315 "Dose equivalent" means the product of absorbed dose and appropriate factors to 316 317 account for differencies differences in biological effectiveness due to the quality of 318 radiation and its spatial distribution in the body. The unit of dose equivalent is 319 the "rem." (One millirem (mrem) = 0.001 rem.) 320 321 322 "General environment" means the total terrestrial, atmospheric and aquatic 323 environments outside sites upon which any operation which is part of a nuclear

NOTICE OF PROPOSED AMENDMENTS

324 fuel cycle is conducted.

325 326 327

328

329

330

331332333

334

335

336

337

338

339 340 341

342

343

344 345 346

347

348 349 350

351

352

353 354 "Gigawatt-year" refers to the quantity of electrical energy produced at the busbar of a generating station. A gigawatt is equal to one billion watts. A gigawatt-year is equivalent to the amount of energy output represented by an average electric power level of one gigawatt sustained for one year.

"Member of the public" means any person<u>individual</u> that can receive a radiation dose in the general environment, whether the person may or may not also be exposed to radiation in an occupation associated with a nuclear fuel cycle. However, a person an individual is not considered a member of the public during any period in which that person he is engaged in carrying out any operation which is part of a nuclear fuel cycle.

"Nuclear fuel cycle" means the operations-defined to be associated with the production of electrical power for public use by any fuel cycle through utilization of nuclear energy.

"Organ" means any human organ exclusive of the dermis, the epidermis, or the cornea.

"Site" means the area contained within the boundary of a location under the control of persons possessing or using radioactive material on which is conducted one or more operations covered by this Part-part.

"Uranium fuel cycle" means the operations of milling of uranium ore, chemical
conversion of uranium, isotopic enrichment of uranium, fabrication of uranium
fuel, generation of electricity by a light-water-cooled nuclear power plant using
uranium fuel, and reprocessing of spent uranium fuel, to the extent that these
directly support the production of electrical power for public use utilizing nuclear
energy, but excludes mining operations, operations at waste disposal sites,
transportation of any radioactive material in support of these operations, and the

ILLINOIS REGISTER 1ª Notice

POLLUTION CONTROL BOARD

362		reuse of recovered nonuranium special nuclear and by-product materials from the
363		cycle.
364		
365	(Sour	rce: Amended at 46 Ill. Reg, effective)
366		
367Sectio	on 1000	.403 Environmental Standards for Uranium Fuel Cycle
368		
369A pers	son con	ducting operations Operations covered by this Subpart must shall be conducted in
370 such a	manne	r as to provide reasonable <u>assure</u>assurance<u>assure</u> that:
371		
372	a)	The annual dose equivalent does not exceed 25 millirems to the whole body, 75
373		millirems to the thyroid, and 25 millirems to any other organ of any member of
374		the public as the result of exposures to planned discharges of radioactive
375		materials, radon and its daughters excepted, to the general environment from
376		uranium fuel cycle operations and to radiation from these operations.
377		
378	b)	The total quantity of radioactive materials entering the general environment from
379		the entire uranium fuel cycle, per gigawatt-year of electrical energy produced by
380		the fuel cycle, contains less than 50,000 curies of krypton-85, 5 millicuries of
381		iodine-129, and 0.5 millicuries combined of plutonium-239 and other
382		alpha-emitting transuranic radionuclides with the halflives greater than one year.
383		
384	(Sour	rce: Amended at 46 Ill. Reg, effective)
385		
386		SUBPART E: RECORDS
387		
388Sectio	on 1000	.501 Records
389		
390A pers	son <mark>_All</mark>	persons subject to this Part <u>mustshallmust</u> submit to the Department, with respect
391 to- for	any ma	terial or facility permitted or licensed by the NRC or for which an NRC permit or
392license	e is sou	ght:
393		
394	a)	Preliminary Safety Analysis Report and Final Safety Analysis Report, as
395		described in 10 CFR 50.34, incorporated by reference in Section 1000.202.
396		
397	b)	Application for Construction Permit and for all amendments thereto, including
398		information required by 10 CFR 50.34a, 50.36, and 51.20, incorporated by
399		reference in Section 1000.202.

ILLINOIS REGISTER 1 Motice

POLLUTION CONTROL BOARD

400		
401	c)	Environmental Impact Appraisal, Draft and Final Environmental Impact
402	,	Statement, Negative Declaration, or other document prepared by the NRC under
403		10 CFR 51, incorporated by reference in Section 1000.202.
404		
405	d)	Operating Permit and all amendments thereto, including Technical Specifications
406	,	under 10 CFR 50.36a, incorporated by reference in Section 1000.202.
407		
408	e)	Application for Amendment to Operating License.
409		
410	f)	All data, records, and reports submitted to the NRC forin connection with for
411	,	determining or predicting radiation levels in air in unrestricted areas or the type or
412		amount of radioactive materials emitted into air conducted by or for such persons.
413		
414	(Sou	rce: Amended at 46 Ill. Reg.— , effective)
415	(
416 Sec	tion 100	0.502 Notification of Incidents
417		
418 <u>A</u> A	HA perso	on subject to this Part mustshallmust immediately notify by telephone and telegraph,
419 or <u>e</u>	lectronic	mail, mailgram, or facsimile, the Illinois Emergency Management Agency (IEMA)
420 <mark>Ma</mark>	nager of	the Office of Nuclear Facility Safety of the Illinois Department of Nuclear Safety,
421 103	5 Outer l	Park Drive, Springfield, Illinois 62704, of any incident or condition arising from the
422use	or posse	ssion of licensed materials or facilities or the conducting of licensed activities which
423may	v have ca	used or threatens to cause emissions or radiation levels in excess of those allowed
424und	er this Pa	art. IEMA's 24-hour Operations Center can be reached for notification of incidents
425at 1	-800-782	2-7860, or, if calling from outside Illinois, 1-217-782-7860.
426		
427	(Sou	rrce: Amended at 46 Ill. Reg.—, effective)
428		
429 Sec	tion 100	0.503 Other Provisions
430		
431	a)	The definitions specified <u>set out</u> in 35 Ill. Adm. Code 201.102 apply to this Part.
432		
433	b)	All persons subject to this Part are subject to the requirements and provisions of
434	,	35 Ill. Adm. Code 201.122, 201.123, 201.124, 201.125, 201.126, 201.141,
435		201.150 and 201.151.
436		
437	(Sou	rce: Amended at 46 Ill. Reg, effective)

NOTICE OF PROPOSED AMENDMENTS

439**Section 1000.APPENDIX A** Concentrations in Air Above Natural Background 440

Element (atomic number)	Isotope ⁽¹⁾			µCi/ml
Actinium (89)	AC 227		S	S 8 x 10 ⁻¹⁴
	110 221		I	19×10^{-13}
	AC 228		S	AC 22883 x 10-9
			Ι	I 6 x 10 ⁻¹⁰
Americium (95)	Am 241	<u></u>	S	2 x 10 ⁻¹³
			Ι	I 4 x 10 ⁻¹²
	_Am 242m		S	Am 242mS2 x 10 ⁻¹³
			Ι	4 9 x 10 ⁻¹²
	Am 242		S	Am 2428 1 x 10 ⁻⁹
			Ι	4 2 x 10 ⁻⁹
	Am 243		S	Am 24382 x 10 ⁻¹³
			Ι	I 4 x 10 ⁻¹²
	Am 244		S	Am 24481 x 10 ⁻⁷
			Ι	$\frac{18 \times 10^{-7}}{2}$
Antimony	Sb 122		S	S 6 x 10 ⁻⁹
			I	45 x 10 ⁻⁹
	Sb 124		S	Sb 124S 5 x 10 ⁻⁹
	G1 105		l	$\frac{1}{10}$ x 10 ⁻¹⁰
	Sb 125		S	Sb 125S 2 x 10 ⁻⁸
A (10)	A 27			$\frac{19}{19} \times 10^{-10}$
Argon (18)	A 3/		Sub ²	$\frac{Sub}{1}$ X 10 ⁻⁴
A	A 41		Sub	$A + 15004 \times 10^{\circ}$
Arsenic (33)	AS /3		5 т	$\frac{3}{11}$ × 10 ⁻⁸
	Δ α 74		I S	$\frac{11}{10} \times 10^{-8}$
	A\$ /4		S I	$\frac{1}{10} \times 10^{-9}$
	As 76		I S	$\Lambda_{\rm S} \frac{76 \text{ S}}{10} \times 10^{-9}$
	A\$ 70		I I	13×10^{-9}
	As 77		S	$\frac{15}{\Lambda_{c}}$ $\frac{77S}{7}$ x 10 ⁻⁸
	115 / /		I	Il x 10 ⁻⁸
Astatine (85)	At 211		S	2×10^{-10}
	· · · <i>u</i> · · ·		Ĩ	1×10^{-9}
Barium (56)	Ba 131		S	4 x 10 ⁻⁸
(<i>)</i>				-

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

		Ι	1 x 10 ⁻⁸
	Ba 140	S	4 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁹
Berkelium (97)	Bk 249	S	3 x 10 ⁻¹¹
		Ι	4 x 10 ⁻⁹
	Bk 250	S	5 x 10 ⁻⁹
		Ι	4 x 10 ⁻⁸
Berylium (4)	Be 7	S	2 x 10 ⁻⁷
-		Ι	4 x 10 ⁻⁸
Bismuth (83)	Bi 206	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
	Bi 207	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻¹⁰
	Bi 210	S	2 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
	Bi 212	S	3 x 10 ⁻⁹
		Ι	7 x 10 ⁻⁹
Bromine (35)	Br 82	S	4 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁹
Cadmium (48)	Cd 109	S	2 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
	Cd 115m	S	1 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁹
	Cd 115	S	8 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
Calcium (20)	Ca 45	S	1 x 10 ⁻⁹
		Ι	4 x 10 ⁻⁹
	Ca 47	S	6 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
Californium (98)	Cf 249	S	5 x 10 ⁻¹⁴
		Ι	$3 \ge 10^{-12}$
	Cf 250	S	2 x 10 ⁻¹³
		Ι	$3 \ge 10^{-12}$
	Cf 251	S	6 x 10 ⁻¹⁴
		Ι	3 x 10 ⁻¹²
	Cf 252	S	2×10^{-13}
		Ι	1 x 10 ⁻¹²
	Cf 253	S	3 x 10 ⁻¹¹

		Ι	3 x 10 ⁻¹¹
	Cf 254	S	2 x 10 ⁻¹³
		Ι	2 x 10 ⁻¹³
Carbon (6)	C 14	S	1 x 10 ⁻⁷
	$(CO_{(2)})$	Sub	1 x 10 ⁻⁶
Cerium (58)	Ce 141	S	2 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁹
	Ce 143	S	9 x 10 ⁻⁹
		Ι	7 x 10 ⁻⁹
	Ce 144	S	3 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
Cesium (55)	Cs 131	S	4 x 10 ⁻⁷
		Ι	1 x 10 ⁻⁷
	Cs 134m	S	1 x 10 ⁻⁶
		Ι	2 x 10 ⁻⁷
	Cs 134	S	1 x 10 ⁻⁹
		Ι	4 x 10 ⁻¹⁰
	Cs 135	S	2 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁹
	Cs 136	S	1 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁹
	Cs 137	S	2 x 10 ⁻⁹
		Ι	5 x 10 ⁻¹⁰
Chlorine (17)	<u>Cl 36C1 36</u>	S	1 x 10 ⁻⁸
		Ι	8 x 10 ⁻¹⁰
	<u>Cl 38C1 38</u>	S	9 x 10 ⁻⁸
		Ι	7 x 10 ⁻⁸
Chromium (24)	Cr 51	S	4 x 10 ⁻⁷
		Ι	8 x 10 ⁻⁸
Cobalt (27)	Co 57	S	1 x 10 ⁻⁷
		Ι	6 x 10 ⁻⁹
	Co 58m	S	6 x 10 ⁻⁷
		Ι	3 x 10 ⁻⁷
	Co 58	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
	Co 60	S	1 x 10 ⁻⁸
		Ι	3 x 10 ⁻¹⁰
Copper (29)	Cu 64	S	7 x 10 ⁻⁸

		Ι	4 x 10 ⁻⁸
Curium (96)	Cm 242	S	4 x 10 ⁻¹²
		Ι	6 x 10 ⁻¹²
	Cm 243	S	2 x 10 ⁻¹³
		Ι	3 x 10 ⁻¹²
	Cm 244	S	3 x 10 ⁻¹³
		Ι	3 x 10 ⁻¹²
	Cm 245	S	2 x 10 ⁻¹³
		Ι	4 x 10 ⁻¹²
	Cm 246	S	2 x 10 ⁻¹³
		Ι	4 x 10 ⁻¹²
	Cm 247	S	2 x 10 ⁻¹³
		Ι	4 x 10 ⁻¹²
	Cm 248	S	2 x 10 ⁻¹⁴
		Ι	4 x 10 ⁻¹³
	Cm 249	S	4 x 10 ⁻⁷
		Ι	4 x 10 ⁻⁷
Dysprosium (66)	Dy 165	S	9 x 10 ⁻⁸
	5	Ι	7 x 10 ⁻⁸
	Dy 166	S	8 x 10 ⁻⁹
	5	Ι	7 x 10 ⁻⁹
Einsteinium (99)	Es 253	S	3 x 10 ⁻¹¹
		Ι	2 x 10 ⁻¹¹
	Es 254m	S	2 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
	Es 254	S	6 x 10 ⁻¹³
		Ι	4 x 10 ⁻¹²
	Es 255	S	2 x 10 ⁻¹¹
		Ι	1 x 10 ⁻¹¹
Erbium (68)	Er 169	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Er 171	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Europium (63)	Eu 152	S	1 x 10 ⁻⁸
	(T/ 2-9-2<u>2</u>=9.2	I 1 x 10 ⁻⁸	1 x 10 ⁻⁸
	hrs)-I		
	Eu 152	S	4 x 10 ⁻¹⁰
	(T/2=13 yrs)-	I 6 x 10⁻¹⁰	6 x 10 ⁻¹⁰

	Eu 154	S	1 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹⁰
	Eu 155	S	3 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
Fermium (100)	Fm 254	S	2 x 10 ⁻⁹
		Ι	2 x 10 ⁻⁹
	Fm 255	S	6 x 10 ⁻¹⁰
		Ι	4 x 10 ⁻¹⁰
	Fm 256	S	1 x 10 ⁻¹⁰
		Ι	6 x 10 ⁻¹¹
Fluorine (9)	F 18	S	2 x 10 ⁻⁷
		Ι	9 x 10 ⁻⁸
Gadolinium (64)	Gd 153	S	8 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
	Gd 159	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Gallium (31)	Ga 72	S	8 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
Germanium (32)	Ge 71	S	4 x 10 ⁻⁷
		Ι	2 x 10 ⁻⁷
Gold (79)	Au 196	S	4 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
	Au 198	S	1 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
	Au 199	S	4 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁸
Hafnium (72)	Hf 181	S	1 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
Holmium (67)	Ho 166	S	7 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
Hydrogen (1)	H3	S	2 x 10 ⁻⁷
		Ι	2 x 10 ⁻⁷
		Sub	$4 \times 10^{-(5)}$
Indium (49)	In 113m	S	3 x 10 ⁻⁷
~ /		Ι	2 x 10 ⁻⁷
	In 114m	S	4 x 10 ⁻⁹
		Ι	7 x 10 ⁻¹⁰
	In 115m	S	8 x 10 ⁻⁸

		Ι	6 x 10 ⁻⁸
	In 115	S	9 <mark>X</mark> x 10 ⁻⁹
		Ι	$1 \ge 10^{-9}$
Iodine (53)	I 125	S	8 x 10 ⁻¹¹
		Ι	6 x 10 ⁻⁹
	I 126	S	9 x 10 ⁻¹¹
		Ι	1 x 10 ⁻⁸
	I 129	S	2 x 10 ⁻¹¹
		Ι	2 x 10 ⁻⁹
	I 131	S	1 x 10 ⁻¹⁰
		Ι	1 x 10 ⁻⁸
	I 132	S	3 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁸
	I 133	S	4 x 10 ⁻¹⁰
		Ι	7 x 10 ⁻⁹
	I 134	S	6 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁷
	I 135	S	1 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁸
Iridium (77)	Ir 190	S	4 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Ir 192	S	4 x 10 ⁻⁹
		Ι	9 x 10 ⁻¹⁰
	Ir 194	S	8 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
Iron (26)	Fe 55	S	3 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁸
	Fe 59	S	5 x 10 ⁻⁹
		Ι	2 x 10 ⁻⁹
Krypton (36)	Kr 85m	Sub	1 x 10 ⁻⁷
	Kr 85	Sub	3 x 10 ⁻⁷
	Kr 87	Sub	2 x 10 ⁻⁸
	Kr 88	Sub	2 x 10 ⁻⁸
Lanthanum (57)	La 140	S	5 x 10 ⁻⁹
		Ι	4 x 10 ⁻⁹
Lead (82)	Pb 203	S	9 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁸
	Pb 210	S	4 x 10 ⁻¹²

		Ι	8 x 10 ⁻¹²
	Pb 212	S	6 x 10 ⁻¹⁰
		Ι	7 x 10 ⁻¹⁰
Lutetium (71)	Lu 177	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Manganese (25)	Mn 52	S	7 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
	Mn 54	S	1 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁹
	Mn 56	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Mercury (80)	Hg 197m	S	3 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁸
	Hg 197	S	4 x 10 ⁻⁸
		Ι	9 x 10 ⁻⁸
	Hg 203	S	2 x 10 ⁻⁹
		Ι	4 x 10 ⁻⁹
Molybdenum (42)	Mo 99	S	3 x 10 ⁻⁸
		Ι	7 x 10 ⁻⁹
Neodymium (60)	Nd 144	S	3 x 10 ⁻¹²
		Ι	1 x 10 ⁻¹¹
	Nd 147	S	1 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
	Nd 149	S	6 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁸
Neptunium (93)	Np 237	S	1 x 10 ⁻¹³
		Ι	4 x 10 ⁻¹²
	Np 239	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Nickel (28)	Ni 59	S	2 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁸
	Ni 63	S	2 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁸
	Ni 65	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Niobium (Columbium) (41)	Nb 93m	S	4 x 10 ⁻⁹
× /		Ι	5 x 10 ⁻⁹

	Nb 95	S	2 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁹
	Nb 97	S	2 x 10 ⁻⁷
		Ι	2 x 10 ⁻⁷
Osmium (76)	Os 185	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
	Os 191m	S	6 x 10 ⁻⁷
		Ι	3 x 10 ⁻⁷
	Os 191	S	4 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Os 193	S	1 x 10 ⁻⁸
		Ι	9 x 10 ⁻⁹
Palladium (46)	Pd 103	S	5 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁸
	Pd 109	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Phosphorus (15)	P 32	S	2 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
Platinum (78)	Pt 191	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
	Pt 193m	S	2 x 10 ⁻⁷
		Ι	2 x 10 ⁻⁷
	Pt 193	S	4 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Pt 197m	S	2 x 10 ⁻⁷
		Ι	2 x 10 ⁻⁷
	Pt 197	S	3 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Plutonium (94)	Pu 238	S	7 x 10 ⁻¹⁴
		Ι	1 x 10 ⁻¹²
	Pu 239	S	6 x 10 ⁻¹⁴
		Ι	1 x 10 ⁻¹²
	Pu 240	S	6 x 10 ⁻¹⁴
		Ι	1 x 10 ⁻¹²
	Pu 241	S	3 x 10 ⁻¹²
		Ι	1 x 10 ⁻⁹
	Pu 242	S	6 x 10 ⁻¹⁴
		Ι	1 x 10 ⁻¹²

	Pu 243	S	6 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁸
	Pu 244	S	6 x 10 ⁻¹⁴
		Ι	1 x 10 ⁻¹²
Polonium (84)	Po 210	S	2 x 10 ⁻¹¹
		Ι	7 x 10 ⁻¹²
Potassium (19)	K 42	S	7 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
Praseodymium (59)	Pr 142	S	7 x 10 ⁻⁹
• • • •		Ι	5 x 10 ⁻⁹
	Pr 143	S	1 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁹
Promethium (61)	Pm 147	S	2 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
	Pm 149	S	1 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
Protoactinium (91)	Pa 230	S	6 x 10 ⁻¹¹
· · · ·		Ι	3 x 10 ⁻¹¹
	Pa 231	S	4 x 10 ⁻¹⁴
		Ι	4 x 10 ⁻¹²
	Pa 233	S	2 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁹
Radium (88)	Ra 223	S	6 x 10 ⁻¹¹
		Ι	8 x 10 ⁻¹²
	Ra 224	S	2 x 10 ⁻¹⁰
		Ι	2 x 10 ⁻¹¹
	Ra 226	S	3 x 10 ⁻¹²
		Ι	2 x 10 ⁻¹²
	Ra 228	S	2 x 10 ⁻¹²
		Ι	1 x 10 ⁻¹²
Radon (86)	Rn 220	S	1 x 10 ⁻⁸
	Rn 222(3) 222 ³	3 x 10 ⁻⁹	3 x 10 ⁻⁹
Rhenium (75)	Re 183	S	9 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁹
	Re 186	S	2 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
	Re 187	S	3 x 10 ⁻⁷
		Ι	2 x 10 ⁻⁸

	D 100	0	1 108
	Re 188	S	1×10^{-6}
	D1 100	l	6 x 10 ⁻⁹
Rhodium (45)	Rh 103m	S	3×10^{-6}
		l	2 x 10 ⁻⁶
	Rh 105	S	3 x 10 ⁻⁸
	-1.04	I	2 x 10 ⁻⁸
Rubidium (37)	Rb 86	S	1 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
	Rb 87	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
Ruthenium (44)	Ru 97	S	8 x 10 ⁻⁸
		Ι	6 x 10 ⁻⁸
	Ru 103	S	2 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁹
	Ru 105	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
	Ru 106	S	3 x 10 ⁻⁹
		Ι	2 x 10 ⁻¹⁰
Samarium (62)	Sm 147	S	2 x 10 ⁻¹²
		Ι	9 x 10 ⁻¹²
	Sm 151	S	2 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
	Sm 153	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Scandium (21)	Sc 46	S	8 x 10 ⁻⁹
		Ι	8 x 10 ⁻¹⁰
	Sc 47	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
	Sc 48	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
Selenium (34)	Se 75	S	4 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
Silicon (14)	Si 31	S	2 x 10 ⁻⁷
		Ι	3 x 10 ⁻⁸
Silver (47)	Ag 105	S	2 x 10 ⁻⁸
	0	Ι	3 x 10 ⁻⁹
	Ag 110m	S	7 x 10 ⁻⁹
	C	Ι	3 x 10 ⁻¹⁰

	Ag 111	S	1 x 10 ⁻⁸
	-	Ι	8 x 10 ⁻⁹
Sodium (11)	Na 22	S	6 x 10 ⁻⁹
		Ι	3 x 10 ⁻¹⁰
	Na 24	S	4 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁹
Strontium (38)	Sr 85m	S	1 x 10 ⁻⁶
		Ι	1 x 10 ⁻⁶
	Sr 85	S	8 x 10 ⁻⁹
		Ι	4 x 10 ⁻⁹
	Sr 89	S	3 x 10 ⁻¹⁰
		Ι	1 x 10 ⁻⁹
	Sr 90	S	3 x 10 ⁻¹¹
		Ι	2 x 10 ⁻¹⁰
	Sr 91	S	2 x 10 ⁻⁸
		Ι	9 x 10 ⁻⁹
	Sr 92	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Sulfur (16)	S 35	S	9 x 10 ⁻⁹
		Ι	9 x 10 ⁻⁹
Tantalum (73)	Ta 182	S	1 x 10 ⁻⁹
		Ι	7 x 10 ⁻¹⁰
Technetium (43)	Tc 96m	S	3 x 10 ⁻⁶
		Ι	1 x 10 ⁻⁶
	Tc 96	S	2 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
	Tc 97m	S	8 x 10 ⁻⁸
		Ι	5 x 10 ⁻⁹
	Tc 97	S	4 x 10 ⁻⁷
		Ι	1 x 10 ⁻⁸
	Tc 99m	S	1 x 10 ⁻⁶
		Ι	5 x 10 ⁻⁷
	Tc 99	S	7 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
Tellurium (52)	Te 125m	S	1 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
	Te 127m	S	5 x 10 ⁻⁹
		Ι	1 x 10 ⁻⁹

	T_{2} 127	c	6 v 10-8
	10127	З Т	0×10 2 x 10-8
	T_{2} 120m	I S	3×10^{-9}
	10 129111	ъ т	5×10^{-9}
	T ₂ 120	I S	1×10^{-7}
	10129	З т	2×10^{-7}
	Т. 121		I X IU'
	le 131m	5 1	1×10^{-6}
	T 122	I C	6×10^{-9}
	Te 132	S	$/ \times 10^{-9}$
	T 1 1 (0	l	4×10^{-9}
Terbium (65)	Tb 160	S	3×10^{-9}
	T1 0 0 0	l	1 x 10 ⁻⁹
Thallium (81)	TI 200	S	9 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁸
	Tl 201	S	7 x 10 ⁻⁸
		Ι	3 x 10 ⁻⁸
	Tl 202	S	3 x 10 ⁻⁸
		Ι	8 x 10 ⁻⁹
	T1 204	S	2 x 10 ⁻⁸
		Ι	9 x 10 ⁻¹⁰
Thorium (90)	Th 227	S	1 x 10 ⁻¹¹
		Ι	6 x 10 ⁻¹²
	Th 228	S	3 x 10 ⁻¹³
		Ι	2 x 10 ⁻¹³
	Th 230	S	8 x 10 ⁻¹⁴
		Ι	3 x 10 ⁻¹³
	Th 231	S	5 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁸
	Th 232	S	1 x 10 ⁻¹²
		Ι	1 x 10 ⁻¹²
	Th natural	S	2×10^{-12}
		I	2×10^{-12}
	Th 234	S	2 x 10 ⁻⁹
		Ĩ	1×10^{-9}
Thulium (69)	Tm 170	S	1×10^{-9}
		ĩ	1×10^{-9}
	Tm 171	S	4×10^{-9}
	1111 1 / 1	I	8 x 10 ⁻⁹
		T	0 1 10

Tin (50)	Sn 113	S	1 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁹
	Sn 125	S	4 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹
Tungsten (Wolfram) (74)	W 181	S	8 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
	W 185	S	3 x 10 ⁻⁸
		Ι	4 x 10 ⁻⁹
	W 187	S	2 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
Uranium (92)	U 230	S	1 x 10 ⁻¹¹
		Ι	4 x 10 ⁻¹²
	U 232	S	3 x 10 ⁻¹²
		Ι	9 x 10 ⁻¹³
	U 233	S	2 x 10 ⁻¹¹
		Ι	4 x 10 ⁻¹²
	U 234	S (⁴)	2 x 10 ⁻¹¹
		Ι	4 x 10 ⁻¹²
	U 235	S (⁴)	2 x 10 ⁻¹¹
		Ι	4 x 10 ⁻¹²
	U 236	S	2 x 10 ⁻¹¹
		Ι	4 x 10 ⁻¹²
	U 238	S (⁴)	$3 \ge 10^{-12}$
		Ι	5 x 10 ⁻¹²
	U 240	S	8 x 10 ⁻⁹
		Ι	6 x 10 ⁻⁹
	U-natural -S(4)	<u>S</u> ⁴	5×10^{-12}
		Ι	$5 \ge 10^{-12}$
Vanadium (23)	V 48	S	6 x 10 ⁻⁹
		Ι	2 x 10 ⁻⁹
Xenon (54)	Xe 131m	Sub	4 x 10 ⁻⁷
	Xe 133	Sub	3 x 10 ⁻⁷
	Xe 133m	Sub	3 x 10 ⁻⁷
	Xe 135	Sub	1 x 10 ⁻⁷
Ytterbium (70)	Yb 175	S	2 x 10 ⁻⁸
		Ι	2 x 10 ⁻⁸
Yttrium (39)	Y 90	S	4 x 10 ⁻⁹
		Ι	3 x 10 ⁻⁹

	Y 91m	S	8 x 10 ⁻⁷
	T () (l	6 X 10 ⁻⁷
	Y 91	S	1 x 10 ⁻⁹
		1	1 x 10 ⁻⁹
	Y 92	S	1 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Y 93	S	6 x 10 ⁻⁹
		Ι	5 x 10 ⁻⁹
Zinc (30)	Zn 65	S	4 x 10 ⁻⁹
		Ι	2 x 10 ⁻⁹
	Zn 69m	S	1 x 10 ⁻⁸
		Ι	1 x 10 ⁻⁸
	Zn 69	S	2 x 10 ⁻⁷
		Ι	3 x 10 ⁻⁷
Zirconium (40)	Zr 93	S	4 x 10 ⁻⁹
(10)		Ĩ	1×10^{-8}
	7r 95	S	4×10^{-9}
		J I	$\frac{1}{1} \times 10^{-9}$
	7r 07	r S	1 x 10 ⁻⁹
		ъ т	7×10^{-9}
Any single radionuclide not listed above with decay mode other than alpha emission or spontaneous fission and with radio- active	Sub		3 x 10 ⁻⁶
half-life less than 2 hours			
A			1 x 10 ⁻¹⁰
Any single radionuclide not listed above with decay mode other than alpha emission or spontaneous fission and with radio- active half-life greater than 2 hours.			

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

Any single radionuclide not listed above, which decays by alpha emission or spontaneous fission. 2 x 10⁻¹⁴

441

442¹Soluble (S); Insoluble (I).

443

444²"Sub" means that values given are for submersion in a semispherical infinite cloud of airborne 445 material.

446

447³These radon concentrations are appropriate for protection from radon-222 combined with its 448 short-lived daughters. The value may be replaced by one-thirtieth (1/30) of a "working level." 449 (A "working level" is defined as any combination of short-lived radon-222 daughters,

450 polonium-218, lead-214, bismuth-214 and polonium-214, in one liter of air, without regard to

451 the degree of equilibrium, that will result in the ultimate emission of 1.3×10^{5} MeV of alpha

452 particle energy.) 453

454⁴For soluble mixtures of U-238, U-234 and U-235 in air chemical toxicity may be the limiting 455 factor. The concentration value is 0.007 milligrams uranium per cubic meter of air. The 456 specific activity for natural uranium is 6.77×10^{-7} curies per gram U. The specific activity (SA) 457 for other mixtures of U-238, U-235 and U-234, if not known, will shall be:

438 459	SA=3.6 x 10 ⁻⁷ curies/gram U	U-depleted
460		
461	$SA=(0.4+0.38 E+0.0034 E^2) 10^{-6}$	E ≥ than ≥ 0.72
462		
463	where E is the percentage by weight of U-235, expressed as percen	t.
464		
4(5)10		1. 1.1 .

465NOTE: Where<u>In any case where there is</u> a mixture in air of more than one radionuclide exists, 466the limiting values for purposes of this Appendix should be determined as follows: 467

4681. If the identity and concentration of each radionuclide in the mixture are known, the limiting values should be derived as follows: Determine, for each radionuclide in the mixture, the ratio between the quantity present in the mixture and the limit otherwise established in Appendix A for the specific radionuclide when not in a mixture. The sum of such ratios for all the radionuclides in the mixture may not exceed "1" (i.e., "unity").

474 EXAMPLE: If radionuclides A, B, and C are present in concentrations C_A, C_B, C_C, and

475 476	if the conce	applicabl ntrations	pplicable MPC's are MPC _A , and MPC _B , and MPC _C respectively, then the trations $\frac{mustshallmust}{must}$ be limited so that the following relationship exists:		
4// 478 479			$(C_A/MPC_A) + (C_B/MPC_B) + (C_C/MPC_C) \leq than \leq 1$		
4802. 481 482	If eith the lir	er the ide	entity or the concentration of any radionuclide in the mixtulues for purposes of Appendix A mustshallmust be 2 x 10	$\frac{14-14}{2}$	
4833. 484	If any below	of the co may be u	nditions specified below are met, the corresponding value used in lieu of those specified in paragraph 2 above.	es specified	
485 486 487 488 489 490	a.	If the ic of one of limit fo the mix	lentity of each radionuclide in the mixture is known but the or more of the radionuclides in the mixture is not known, r the mixture is the limit specified in Appendix A for the ture having the lowest concentration limit; or	ne concentration the concentration radionuclide in	
490 491 492 493 494 495 496	b.	If the ic known mixture specifie from th	lentity of each radionuclide in the mixture is not <u>now</u> kno that certain radionuclides specified in Appendix A are no e, the concentration limit for the mixture is the lowest con ed in Appendix A for any radionuclide which is not known e mixture; or	wn, but it is t present in the centration limit n to be absent	
497 498	c.	Elemen	Element (atomic number) and isotope. μ Ci/ml		
490			If it is known that alpha-emitters and Sr 90, I 129, Pb 210, Ac 227, Ra 228, Pa 230, Pu 241, and Bk 249 -are not present.	1 x 10 ⁻¹⁰	
			If it is known that alpha-emitters and Pb 210, Ac 227, Ra 228, and Pu 241 are not present.	1 x 10 ⁻¹¹	
			If it is known that alpha-emitters and Ac 227 are not present.	1 x 10 ⁻¹²	
10.0			If it is known that Ac 227, Th 230, Pa 231, Pu 238, Pu 239, Pu 240, Pu 242, Pu 244, Cm 248, Cf 249 and Cf 251 are not present.	1 x 10 ⁻¹³	

5004.	If a mixture of radionuclides consists of uranium and its daughters in ore dust before
501	prior to chemical separation of the uranium from the ore, the following values may be
502	used for uranium and its daughters through radium-226, instead of those from paragraphs
503	1, 2, or 3 above:
504	
505	3 x 10 ⁻¹² -12 μCi/ml gross alpha activity; 2 x 10-12 uCiμCi/ml natural uranium; or 3
506	micrograms per cubic meter of air natural uranium.
507	
5085.	For purposes of this note, a radionuclide may be considered as not present in a mixture
509	if:
510	
511	(a) the ratio of the concentration of that radionuclide in the mixture ($C(A)CA$) to the
512	concentration limit for that radionuclide specified in Appendix A (MPCAMPCA)
513	does not exceed 1/10 (i.e., $C_A CA / MPC_A \leq MPCA \leq than 1/10$), and
514	
515	$(b)_{\pm}$ the sum of such ratios for all the radionuclides considered as not present in the
516	mixtures does not exceed 1/4, (i.e., (CA/MPCA + C_BCB/MPC_BMPCB + < than
517	1/4).
518	
519	
521	(Source: Amended at 46 Ill. Reg, effective)

Document comparison by Workshare Compare on Wednesday, May 4, 2022 11:01:55 AM

Input:	
Document 1 ID	file://I:\Input\Agency Rulemakings - Files Received\2022\Volume 46, Issue 19\35-1000-Agency Proposed.docx
Description	35-1000-Agency Proposed
Document 2 ID	file://I:\Input\Agency Rulemakings - Files Received\2022\Volume 46, Issue 19\35-1000-JCAR r01.docx
Description	35-1000-JCAR r01
Rendering set	Standard

Legend:

Insertion	
Deletion	
Moved from	
Moved to	
Style change	
Format change	
Moved deletion	
Inserted cell	
Deleted cell	
Moved cell	
Split/Merged cell	
Padding cell	

Statistics:		
	Count	
Insertions	104	
Deletions	214	
Moved from	0	
Moved to	0	
Style changes	0	
Format changes	0	

Total changes	318